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Abstract

In this paper, we apply the successive approximation method (SAM) to solve nonlinear differential equations

(DEs) with proportional delay. Utilizing SAM, we establish results on existence and uniqueness. Differential
equations (DEs) with proportional delay represent a particular case of time-dependent delay differential equations

(DDEs). We demonstrate that the equilibrium solution of time-dependent DDEs is asymptotically stable over

finite time intervals. We obtained a series solution for the pantograph and Ambartsumian equations and proved
their convergence. Furthermore, we prove that the zero solution of the pantograph and Ambartsumian equations is

asymptotically stable. The outcomes of integer order obtained for DEs with proportional delay and time-dependent
DDEs have been extended to the initial value problem (IVP) for fractional DDEs and a system of fractional DDEs

involving the Caputo fractional derivative. Finally, we illustrate SAM’s efficacy using particular non-linear DEs

with proportional delay. The results obtained for non-linear DEs with proportional delay by SAM are compared
with exact solutions and other iterative methods. It is noted that SAM is easier to use than other techniques, and

the solutions obtained using SAM are consistent with the exact solution.
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1. Introduction

Delay differential equations (DDEs) contain the state variable at a past time t − τ . The inclusion of the delay
τ makes the DDE an infinite-dimensional dynamical system. Even if it is very difficult to analyze and solve such
equations, this branch is popular among applied scientists due to its applications in various fields.

On the other hand, if the order of the derivative in a differential equation is any arbitrary number (instead of a
positive integer), then the equation is called a fractional differential equation (FDE). Even though there are several
inequivalent definitions of the fractional derivative operator, one can select the derivative that is appropriate for the
model under consideration. This flexibility is a key feature behind the popularity of fractional calculus.

Daftardar-Gejji and coworkers proposed numerical schemes [5, 15] for solving fractional order delay differential
equations (FDDE). The modified Laguerre wavelets method [18], spectral collocation method [1], and fractional-order
fibonacci-hybrid functions [30] are a few other methods for solving FDDEs. Stability analysis of FDDEs has been
proposed in [6–8, 20]. Applications of FDDE are presented in [9, 21, 28, 29].

In general, the delay τ in the DDE x′(t) = f(t, x(t), x(t− τ)) is not constant. The analysis becomes more difficult
when τ depends on time or state. The proportional delay differential equation x′(t) = f(t, x(t), x(qt)) or a pantograph
equation is a particular case of time-dependent DDE with τ(t) = (1− q)t. These equations are proposed by Ockendon
and Tayler in the seminal work [22] to model the motion of an overhead trolley wire. A few other applications of these
equations are discussed in [10, 12]. The Daftardar-Gejji and Jafari method (DJM) is applied in [11] to find analytical
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solutions of the pantograph equation. Furthermore, the authors presented various relationships between the solution
series and existing special functions. Patade and Bhalekar proposed the power series solution for the Ambartsumian
equation [23] using DJM. The analytical solution for the pantograph equation is discussed in [24]. Vidhyaa et al.
[34] have obtained oscillation conditions for non-canonical second-order nonlinear delay difference equations with a
super-linear neutral term. The asymptotic behavior of third-order delay difference equations with a negative middle
term is discussed in [31].

Solving nonlinear FDEs with proportional delay is an important task in mathematical analysis and applications.
This motivates us to work on finding solutions to FDEs with proportional delay. In this paper, we derive the existence-
uniqueness results for FDEs with proportional delay and find the solutions of FDEs with proportional delay using
SAM in terms of power series.

The paper is organized as follows: The basic definitions and preliminary results are presented in section 2, and the
SAM is discussed in section 2.1. Existence and uniqueness results are described in section 2.3, and stability analysis
is presented in section 3. Series solutions of the pantograph equation and the Ambartsumian equation are described
in section 4. Results for fractional differential equations (FDEs) and systems of FDEs are developed in sections 5 and
6, respectively. Sections 7 and 8 deal with illustrative examples. Finally, conclusions are summarized in Section 9.

2. Preliminaries and Notations

Definition 2.1. [19] The Riemann-Liouville fractional integral of order α > 0 of f ∈ C[0,∞) is defined as:

Iαf(t) =
1

Γ(α)

∫ t

0

(t− ζ)α−1f(ζ)dζ, t > 0. (2.1)

Definition 2.2. [19] The (left sided) Caputo fractional derivative of f, f ∈ Cm−1,m ∈ N ∪ {0}, is defined as:

Dαf(t) =
dm

dtm
f(t), α = m,

= Im−α
dm

dtm
f(t), m− 1 < α < m, m ∈ N. (2.2)

Note that for 0 ≤ m− 1 < α ≤ m and β > −1

Iαxβ =
Γ(β + 1)

Γ(β + α+ 1)
xβ+α,

(IαDαf) (t) = f(t)−
m−1∑
k=0

f (k)(0)
tk

k!
. (2.3)

Definition 2.3. [19] The Mittag-Leffler function is defined as

Eα(t) =

∞∑
n=0

tn

Γ(αn+ 1)
, α > 0. (2.4)

Definition 2.4. [19] The multi-parameter Mittag-Leffler function is defined as:

E(α1,··· ,αn),β(z1, z2, · · · , zn) =

∞∑
k=0

∑
l1+···+ln=k

lj≥0

(k; l1, · · · , ln)


n∏
j=1

z
lj
j

Γ(β +

n∑
j=1

αj lj)

 .
where, (k; l1, l2, · · · , ln) is the multinomial coefficient defined as

(k; l1, l2, · · · , ln) =
k!

l1!l2! · · · ln!
. (2.5)
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Definition 2.5. [16] Consider the DDE,

y′(t) = f(y(t), y(t− τ(t))), (2.6)

where f : R ×R→ R. The flow φt(t0) is a solution y(t) of Eq.(2.6) with initial condition y(t) = t0, t ≤ 0. The point
y∗ is called equilibrium solution of Eq. (2.6) if f(y∗, y∗) = 0.

(a) If, for any ε > 0, there exist δ > 0 such that |t0 − y∗| < δ ⇒ |φt(t0) − y∗| < ε, then the system Eq. (2.6) is
stable (in the Lyapunov sense) at the equilibrium y∗.

(b) If the system (2.6) is stable at y∗ and moreover, lim
t→∞

|φt(t0) − y∗| = 0 then the system (2.6) is said to be

asymptotically stable at y∗.

2.1. Successive Approximation Method (SAM). The successive approximations method (SAM) is a familiar
classical technique for solving integral equations [13]. SAM has applications in various fields, including physics,
engineering, and applied mathematics, especially in problems involving integral equations arising in initial value
problems [14, 32, 33]. Consider the differential equation

y′(t) = f(t, y(t)), y(0) = y0, (2.7)

Let φ0(t) = y0 be the first approximate solution of the IVP (2.7). Then

φ1(t) = y0 +

∫ t

0

f(x, φ0(x))dx,

φ2(t) = y0 +

∫ t

0

f(x, φ1(x))dx.

Continuing in this way, we obtain

φk+1(t) = y0 +

∫ t

0

f(x, φk(x))dx, k = 0, 1, 2, · · · . (2.8)

2.2. SAM for differential equations with proportional delay: Consider the differential equation with propor-
tional delay

y′(t) = f(t, y(t), y(qt)), y(0) = y0, 0 < q < 1, (2.9)

where f is a continuous function defined on some 3-dimensional rectangle

R = {|t| ≤ a, |y(t)− y0| ≤ b, |y(qt)− y0| ≤ b, a > 0, b > 0}.

Let φ0(t) = y0 be the initial approximation for the IVP (2.9). Then

φ1(t) = y0 +

∫ t

0

f(x, φ0(x), φ0(qx))dx,

φ2(t) = y0 +

∫ t

0

f(x, φ1(x), φ1(qx))dx.

Continuing in this way, we obtain:

φk+1(t) = y0 +

∫ t

0

f(x, φk(x), φk(qx))dx, k = 0, 1, 2, · · · . (2.10)

2.3. Existence and uniqueness results.

Theorem 2.6. A function φ is a solution of the IVP (2.9) on an interval I if and only if it satisfies the integral
equation:

y(t) = y0 +

∫ t

0

f(x, y(x), y(qx))dx, for t ∈ I. (2.11)
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Proof. Let φ be a solution of the IVP (2.9) on an interval I. Then

φ′(t) = f(t, φ(t), φ(qt)), φ(0) = y0, 0 < q < 1 (2.12)

The equivalent integral Equation (2.12) is

φ(t) = φ(0) +

∫ t

0

f(x, φ(x), φ(qx))dx. (2.13)

and φ(0) = y0. Thus φ is a solution of the IVP (2.11).
Conversely, suppose Equation (2.13) holds. Differentiating Equation (2.13) w.r.t. t, we get

φ′(t) = f(t, φ(t), φ(qt)), 0 < q < 1 ∀t ∈ I.
From Equation (2.11), φ(0) = y0. Hence, φ is a solution of the IVP (2.9). �

Theorem 2.7. Let f be continuous and |f | ≤M on R. The successive approximation (2.10) exist and are continuous
on the interval I = [−ζ, ζ], where ζ = min

{
a, bM

}
. If t ∈ I then (t, y(t), y(qt)) ∈ R and |φk(t) − y0| ≤ M |t|,

|φk(qt)− y0| ≤M |t|.

Proof. We prove the result by mathematical induction.

(i) Clearly φ(0) = y0 is continuous on I. Thus, the theorem is true for k = 0.
(ii) For k = 1, we have

φ1(t) = y0 +

∫ t

0

f(x, φ0(x), φ0(qx))dx,

φ1(t) = y0 +

∫ t

0

f(x, y0, y0)dx.

Since f is continuous, φ1(t) exists.

|φ1(t)− y0| = |
∫ t

0

f(x, φ0(x), φ0(qx))dx|

≤
∫ t

0

|f(x, φ0(x), φ0(qx))|dx

≤M |t|
≤ b, t ∈ I,

and |φ1(qt)− y0| ≤M |qt|
≤M |t|, 0 < q < 1

≤ b, t ∈ I.
Thus, for t ∈ I, (t, y(t), y(qt)) ∈ R and |φ1(t)− y0| ≤M |t|, |φ1(qt)− y0| ≤M |t|.
Thus, the theorem is true for k = 1:

(iii) Assume that the theorem is true for k = n. i.e. For t ∈ I, (t, y(t), y(qt)) ∈ R and |φn(t) − y0| ≤ M |t|,
|φn(qt)− y0| ≤M |t|.

(iv) To prove the theorem for k = n+ 1.

If t ∈ I, then

φn+1(t) = y0 +

∫ t

0

f(x, φn(x), φn(qx))dx.

Since f is continuous, φn+1(t) exists on I.

|φn+1(t)− y0| ≤M |t|
≤ b, t ∈ I,

and |φn+1(qt)− y0| ≤M |qt|
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≤M |t|, 0 < q < 1

≤ b, t ∈ I.

Thus, if t ∈ I, (t, y(t), y(qt)) ∈ R and |φn+1(t)− y0| ≤M |t|, |φn+1(qt)− y0| ≤M |t|.
Hence, by mathematical induction, the result is true for all positive integer n. �

Theorem 2.8. (Existence Theorem) Let f be continuous and |f | ≤M on the 3-dimensional rectangle

R = {|t| ≤ a, |y(t)− y0| ≤ b, |y(qt)− y0| ≤ b, a > 0, b > 0.}

Suppose f satisfies the Lipschitz condition in its second and third variables with Lipschitz constants L1 and L2 such
that

|f(t, y1(t), y1(qt))− f(t, y2(t), y2(qt))| ≤ L1|y1(t)− y2(t)|+ L2|y1(qt)− y2(qt)|.

Then the successive approximations (2.10) converge on the interval I = [−ζ, ζ], where ζ = min
{
a, bM

}
to a solution φ

of the IVP (2.9) on I.

Proof. We have

φk(t) = φ0(t) +

k∑
n=1

[φn(t)− φn−1(t)].

To prove that the sequence {φk} converges, it is enough to prove that the series

φ0(t) +

∞∑
n=1

[φn(t)− φn−1(t)] (2.14)

is convergent.
By Theorem 2.7 the function φk all exist and are continuous on I. Also, |φ1(t)−φ0(t)| ≤M |t| and |φ1(qt)−φ0(qt)| ≤

M |t| for t ∈ I.
Now,

φ2(t)− φ1(t) =

∫ t

0

[f(x, φ1(x), φ1(qx))− f(x, φ0(x), φ0(qx))]dx

∴ |φ2(t)− φ1(t)| ≤
∫ t

0

|f(x, φ1(x), φ1(qx))− f(x, φ0(x), φ0(qx))|dx

≤
∫ t

0

[L1|φ1(x)− φ0(x)|+ L2|φ1(qx)− φ0(qx)|]dx

≤M(L1 + L2)
|t|2

2
.

We shall prove by mathematical induction

|φn(t)− φn−1(t)| ≤M(L1 + L2)n−1 |t|n

n!
. (2.15)

We have proven that Equation (2.15) holds for n = 1, 2. Assume that (2.15) holds for n = m.
We have

φm+1(t)− φm(t) =

∫ t

0

[f(x, φm(x), φm(qx))− f(x, φm−1(x), φm−1(qx))]dx

∴ |φm+1(t)− φm(t)| ≤
∫ t

0

|f(x, φm(x), φm(qx))− f(x, φm−1(x), φm−1(qx)|dx

≤
∫ t

0

[L1|φm(x)− φm−1(x)|+ L2|φm(qx)− φm−1(qx)|]dx
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≤M(L1 + L2)m
|t|m+1

(m+ 1)!
..

Thus, the result is true for n = m+ 1.
Hence, by the mathematical induction, the result is true for all n = 1, 2, · · · . Therefore, the infinite series (2.15) is

absolutely convergent on I. This shows that the nth term of the series |φ0(t)| +
∑∞
n=1 |φn(t) − φn−1(t)| is less than

M
(L1+L2) times the nth term of the power series e(L1+L2)|t|. Hence, the series (2.15) is converges. �

3. Stability Analysis

The differential equations with proportional delay

y′(t) = f (t, y(t), y(qt)) , (3.1)

is a special case of the time-dependent delay differential equation (DDE)

y′(t) = f (t, y(t), y (t− τ(t))) with τ(t) = (1− q)t,
The following results are similar to those in [16].

Theorem 3.1. Suppose that the equilibrium solution y∗ of the equation

y′ = f(y(t), y(t− τ∗)), τ∗ = τ(t0), (3.2)

is stable and ‖f(y(t), y(t − τ(t))) − f(y(t), y(t − τ(t1)))‖ < ε1|t − t1|, for some ε1 > 0 and for all t, t1 ∈ [t0, t0 + c),
where c is a positive constant. Then there exists t̄ > 0 such that the equilibrium solution y∗ of (2.6) is stable on the
finite time interval [t0, t̄).

Corollary 3.2. If the real parts of all roots of λ− a− be−λτ∗
= 0 are negative, where a = ∂1f, b = ∂2f are evaluated

at the equilibrium, then there exist εc, t̄(> t0), such that when ε1 < εc, the solution y∗ = 0 of (2.6) is stable on the
finite time interval [t0, t̄).

4. Series Solution of Pantograph Equation

The pantograph is a device used in electric trains to collect current from overhead lines. The pantograph equation
was formulated by Ockendon and Taylor in 1971 and originates in electrodynamics [22].

Consider the pantograph equation:

y′(t) = ay(t) + by(qt), y(0) = 1, (4.1)

where 0 < q < 1, a, b ∈ R. Integrating (4.1), we get

y(t) = 1 +

∫ t

0

(ay(x) + by(qx)) dt (4.2)

Let φk(t) denote the kth approximate solution, with the initial approximate

φ0(t) = 1. (4.3)

For k ≥ 1, the recurrent formula as below:

φk(t) = 1 +

∫ t

0

(aφk−1(x) + bφk−1(qx)) dx. (4.4)

From this recurrence relation, we have

φ1(t) = 1 +

∫ t

0

(aφ0(x) + by0(qx)) dx

= 1 + (a+ b)
t

1!
,

φ2(t) = 1 +

∫ t

0

(aφ1(x) + bφ1(qx)) dx
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= 1 + (a+ b)
t

1!
+ (a+ b)(a+ bq)

t2

2!
,

φ3(t) = 1 +

∫ t

0

(aφ2(x) + bφ2(qx)) dx

= 1 + (a+ b)
t

1!
+ (a+ b)(a+ bq)

t2

2!
+ (a+ b)(a+ bq)(a+ bq2)

t3

3!
,

...

φk(x) = 1 +
tk

k!

k−1∏
j=0

(
a+ bqj

)
, k = 1, 2, 3 · · · .

As k →∞, φk(t)→ y(t)

y(t) = 1 +

∞∑
m=1

tm

m!

m−1∏
j=0

(
a+ bqj

)
.

If we define
∏m−1
j=0

(
a+ bqj

)
= 1, for m = 0, then

y(t) =

∞∑
m=0

tm

m!

m−1∏
j=0

(
a+ bqj

)
. (4.5)

Theorem 4.1. For 0 < q < 1, the power series (4.5) is convergent for all t ∈ R.

Corollary 4.2. The power series (4.5) is absolutely convergent for all t and hence it is uniformly convergent on any
compact interval of R.

Theorem 4.3. If 0 < q < 1 and a, b ≥ 0, then

eat ≤ y(t) =

∞∑
m=0

tm

m!

m−1∏
j=0

(
a+ bqj

)
≤ e(a+b+c)t, 0 ≤ t <∞.

Theorem 4.4. If (a+ b) < 0 then the zero solution of Eq. (4.1) is asymptotically stable.

Proof. Define

u(t) = max
0≤x≤t

y2(t)

∴
1

2
u′(t) =

1

2

d

dt
(y2(t))

= y(t)y′(t)

= y(t)(ay(t) + by(qt))

= ay2(t) + by(t)y(qt)

≤ (a+ b)u(t)

⇒ u(t) ≤ u(0)e2(a+b)t

∴ lim
x→∞

y(t) = 0, if (a+ b) < 0.

�

4.1. Series solution of Ambartsumian equation. In [3], Ambartsumian derived a delay differential equation
describing the fluctuations of the surface brightness in a the Milky Way. The equation is given as:

y′(t) = −y(t) +
1

q
y

(
t

q

)
, (4.6)
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where q > 1 is a constant for the given model.
Equation (4.6) with the initial condition y(0) = λ can be written equivalently as

y(t) = λ+

∫ t

0

(
1

q
y

(
x

q

)
− y(x)

)
dx. (4.7)

Let φk(t) be the kth approximate solution, where the initial approximate solution is taken as

φ0(t) = λ. (4.8)

For k ≥ 1, we use the recurrence relation:

φk(t) = λ+

∫ t

0

(
1

q
φk−1

(
x

q

)
− φk−1(x)

)
dx. (4.9)

From this recurrence relation, we have:

φ1(t) = λ+

∫ t

0

(
1

q
φ0

(
x

q

)
− φ0(x)

)
dx

= λ+

∫ t

0

(
λ

q
− λ
)
dx

= λ+

(
λ

q
− λ
)
t

1!

=

(
1 +

(
1

q
− 1

)
t

1!

)
λ,

φ2(t) = λ+

∫ t

0

(
1

q
φ1

(
x

q

)
− φ1(x)

)
dx

=

(
1 +

(
1

q
− 1

)
t

1!
+

(
1

q
− 1

)(
1

q2
− 1

)
t2

2!

)
λ,

...

φk(t) =

1 +

k∑
m=1

tm

m!

m∏
j=1

(
1

qj
− 1

)λ.

As k →∞, φk(t)→ y(t)

y(t) =

1 +

∞∑
m=1

tm

m!

m∏
j=1

(
1

qj
− 1

)λ.

If we define
∏m
j=1

(
1
qj − 1

)
= 1, for m = 0, then

y(t) =

 ∞∑
m=0

tm

m!

m∏
j=1

(
1

qj
− 1

)λ. (4.10)

Theorem 4.5. For q > 1, the power series (4.10) is convergent for all t ∈ R.

Corollary 4.6. The power series (4.10) is absolutely convergent for all t and is therefore uniformly convergent on
any compact interval of R.

Theorem 4.7. The zero solution of (4.6) is asymptotically stable.
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5. Fractional order differential equations with proportional delay

Consider the initial value problem (IVP)

Dαy(t) = f(t, y(t), y(qt)), 0 < α ≤ 1, 0 < q < 1,

y(0) = y0, (5.1)

where Dα denotes the Caputo fractional derivative and f is a continuous function defined on the 3-dimensional
rectangle

R = {|t| ≤ a, |y(t)− y0| ≤ b, |y(qt)− y0| ≤ b, a > 0, b > 0}.

Theorem 5.1. A function φ is a solution of the IVP (5.1) on an interval I if and only if it is a solution of the integral
equation

y(t) = y0 +

∫ t

0

(t− x)α−1

Γ(α)
f(x, y(x), y(qx))dx, on I. (5.2)

Theorem 5.2. Let f be continuous and |f | ≤M on R. The successive approximation

φk+1(t) = y0,

φk+1(t) = y0 +

∫ t

0

(t− x)α−1

Γ(α)
f(x, φk(x), φk(qx))dx, k = 0, 1, 2, · · · . (5.3)

exist and are continuous on the interval I = [−ζ, ζ], where ζ = min
{
a, (Γ(α+1)b

M )
1
α

}
. If t ∈ I then (t, y(t), y(qt)) ∈ R

and |φk(t)− y0| ≤M |t|α
Γ(α+1) , |φk(qt)− y0| ≤M |t|α

Γ(α+1) .

Theorem 5.3. (Existence Theorem) Let f be continuous and |f | ≤M on the 3-dimensional rectangle

R = {|t| ≤ a, |y(t)− y0| ≤ b, |y(qt)− y0| ≤ b, a > 0, b > 0}.

Suppose f satisfies the Lipschitz condition in its second and third variable with Lipschitz constants L1 and L2 such
that

|f(t, y1(t), y1(qt))− f(t, y2(t), y2(qt))| ≤ L1|y1(t)− y2(t)|+ L1|y1(qt)− y2(qt)|.

Then the successive approximations (5.3) converge on the interval I = [−ζ, ζ], where ζ = min
{
a, (Γ(α+1)b

M )
1
α

}
to a

solution φ of the IVP (5.1) on I.

5.1. Series solution of fractional order Pantograph equation. Consider the fractional order pantograph equa-
tion as:

Dαy(t) = ay(t) + by(qt), y(0) = 1, (5.4)

where 0 < α ≤ 1, 0 < q < 1, a, b ∈ R.
The solution of (5.4) using successive approximation is

y(t) =

∞∑
m=0

tαm

Γ(αm+ 1)

m−1∏
j=0

(
a+ bqαj

)
. (5.5)

Theorem 5.4. If 0 < q < 1, then the power series (5.5) is convergent for all finite values of t.

Theorem 5.5. If 0 < q < 1 and a, b ≥ 0, then

Eα(atα) ≤ y(t) =

∞∑
m=0

tαm

Γ(αm+ 1)

m−1∏
j=0

(
a+ bqαj

)
≤ Eα((a+ b)tα), 0 ≤ t <∞.
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5.2. Series solution of fractional order Ambartsumian equation. Consider the fractional order Ambartsumian
equation as:

Dαy(t) = −y(t) +
1

q
y

(
t

q

)
, y(0) = 1, (5.6)

where q > 1 and is constant for the given model.
The solution of (5.6) using successive approximation is

y(t) =

∞∑
m=0

tαm

Γ(αm+ 1)

m−1∏
j=0

(
1

q1+αj
− 1

)
. (5.7)

Theorem 5.6. If q > 1, then the power series (5.7) is convergent for all finite values of t.

6. System of fractional order differential equations with proportional delay

Consider the initial value problem (IVP):

Dαiyi(t) = fi(t, ȳ(t), ȳ(qt)), 0 < αi ≤ 1, 0 < q < 1,

yi(0) = iy0, 1 ≤ i ≤ n, (6.1)

where Dαi denotes the Caputo fractional derivative, ȳ(t) = (y1(t), y2(t) · · · , yn(t)), ȳ(qt) = (y1(qt), y2(qt) · · · , yn(qt))
and f = (f1, f2 · · · , fn) is a continuous function defined on the (2n+ 1) dimensional rectangle

R = {|t| ≤ a, |yi(t)−i y0| ≤ bi, |yi(qt)−i y0| ≤ bi, a > 0, bi > 0, 1 ≤ i ≤ n}.

Theorem 6.1. A function φ̄ is a solution of the IVP (6.1) on an interval I if and only if it is a solution of the integral
equation

yi(t) =i y0 +

∫ t

0

(t− x)αi−1

Γ(αi)
f(x, ȳ(x), ȳ(qx))dx on I, (6.2)

where φ̄m =
(

1φm,
2 φm, · · · ,n φm

)
Theorem 6.2. Let ||f || = M on rectangle R. The successive approximation

iφ0(t) =i y0, i = 0, 1, 2, · · · .

iφk+1(t) = y0 +

∫ t

0

(t− x)αi−1

Γ(αi)
f(x, φ̄k(x), φ̄k(qx))dx. k = 0, 1, 2, · · · . (6.3)

exist and are continuous on the interval I = [−ζ, ζ], where

ζ = min

{
a,

(
Γ(α1 + 1)b1

M

) 1
α1

, · · · ,
(

Γ(αn + 1)bn
M

) 1
αn

}
.

If t is in the interval I then (t, ȳm(t), ȳm(qt)) is in rectangle R and ||ȳm(t)−ȳ(0)|| ≤M
∑m
i=1

|t|αi
Γ(αi+1) , ||ȳm(qt)−ȳ(0)|| ≤

M
∑m
i=1

|t|αi
Γ(αi+1) ∀m.

Theorem 6.3. Let f be a continuous function defined on the rectangle

R = {|t| ≤ a, |yi(t)−i y0| ≤ bi, |yi(qt)−i y0| ≤ bi, a > 0, bi > 0, 1 ≤ i ≤ n}.

Suppose f satisfies Lipschitz condition in second and third variable with Lipschitz constants L1 and L2 such that
|f(t, ȳ1(t), ȳ1(qt)) − f(t, ȳ2(t), ȳ2(qt))| ≤ L1|ȳ1(t) − ȳ2(t)| + L1|ȳ1(qt) − ȳ2(qt)|. Then the successive approximations

(6.3) converges on the interval I = [−ζ, ζ], where ζ = min

{
a,
(

Γ(α1+1)b1
M

) 1
α1
, · · · ,

(
Γ(αn+1)bn

M

) 1
αn

}
to a solution of

the φ of the IVP (6.1) on I.
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6.1. System of fractional-order Pantograph equation. Consider the system of fractional-order pantograph equa-
tion

Dαy(t) = Ay(t) +By(qt), y(0) = y0, 0 < α ≤ 1, (6.4)

where 0 < q < 1, A = (aij)n×n, B = (bij)n×n, and y = [y1, y2, · · · , yn]T .

The solution of (4.4) using successive approximation is

y(t) =

 ∞∑
k=0

k∏
j=1

(A+Bq−(k−j)α)
tkα

Γ(kα+ 1)

λ. (6.5)

Theorem 6.4. For 0 < q < 1, the power series (6.5) is convergent for t ∈ R.

6.2. System of fractional-order Ambartsumian equations. In this section, we generalize the Ambartsumian
Equation (2.9) to the system of fractional-order Ambartsumian equations [25] as:

Dαy(t) = −Iy(t) +By

(
t

q

)
, y(0) = λ, 0 < α ≤ 1, (6.6)

where Dα denotes the Caputo fractional derivative, I is the identity matrix of order n and 1 < q, y =


y1

y2

...
yn

 , λ =


λ1

λ2

...
λn

 ,

and B =


1
q 0 0 · · · 0

0 1
q 0 · · · 0

...
...

...
. . . 0

0 0 0 · · · 1
q


n×n

.

Applying SAM to the initial value problem (6.6), we have

y(t) = y(0)− IJαy(t) +BJαy

(
t

q

)
. (6.7)

Let φk(t) denote the kth approximate solution, where the initial approximate solution is taken as

φ0(t) = λ. (6.8)

For k ≥ 1, we use the following recurrence relation:

φk(t) = λ− IJαφk−1(t) +BJαφk−1

(
t

q

)
. (6.9)

From this recurrence relation, we derive:

φ1(t) = λ− IJαφ0(t) +BJαφ0

(
t

q

)
= λ− I λtα

Γ(α+ 1)
+B

λtα

Γ(α+ 1)

=

(
I + (−I +B)

tα

Γ(α+ 1)

)
λ,

φ2(t) = λ− IJαφ1(t) +BJαφ1

(
t

q

)
= λ− IJα

[(
I + (−I +B)

tα

Γ(α+ 1)

)
λ

]
+BJα

(
I + (−I +B)

q−αtα

Γ(α+ 1)

)
λ
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= λ− I
[

λtα

Γ(α+ 1)
+ (−I +B)

λt2α

Γ(2α+ 1)

]
+B

[
λtα

Γ(α+ 1)
+ (−I +B)

λq−αt2α

Γ(2α+ 1)

]
=

[
I + (−I +B)

tα

Γ(α+ 1)
+ (−I +Bq−α)(−I +B)

t2α

Γ(2α+ 1)

]
λ,

φ3(t) =

[
I + (−I +B)

tα

Γ(α+ 1)
+ (−I +Bq−α)(−I +B)

t2α

Γ(2α+ 1)

+(−I +Bq−2α)(−I +Bq−α)(−I +B)
t3α

Γ(3α+ 1)

]
λ,

· · ·

φk(t) =

I +

k∑
m=1

m∏
j=1

(−I +Bq−(m−j)α)
tmα

Γ(mα+ 1)

λ.
As k →∞, φk(t)→ y(t)

y(t) =

I +

∞∑
k=1

k∏
j=1

(−I +Bq−(k−j)α)
tkα

Γ(kα+ 1)

λ.
If we set

∏k
j=1(−I +Bq(k−j)α) = I, for k = 0, then

y(t) =

 ∞∑
k=0

k∏
j=1

(−I +Bq−(k−j)α)
tkα

Γ(kα+ 1)

λ. (6.10)

Theorem 6.5. For q > 1, the power series

y(t) =

 ∞∑
k=0

k∏
j=1

(−I +Bq−(k−j)α)
tkα

Γ(kα+ 1)

λ,
is convergent for t ∈ R.

Proof. The result follows immediately from the ratio test [4]. �

7. Illustrative Examples

Example 7.1. Consider the nonlinear differential equations with proportional delay [2, 17, 26, 27]

dy(t)

dt
= 1− 2y2

(
t

2

)
, y(0) = 0. (7.1)

The corresponding integral equation is:

y(t) =

∫ t

0

(
1− 2u2

(
t

2

))
dx. (7.2)

Using the successive approximation method (2.10), we obtain:

φ0(t) = 0,

φ1(t) = t,

φ2(t) = t− t3

6
,

φ3(t) = t− t3

6
+

t5

120
− t7

8064
,
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φ4(t) = t− t3

6
+

t5

120
− t7

5040
+

61t9

23224320
− 67t11

3406233600
+

t13

12881756160
− t15

7990652436480
,

φ5(t) = t− t3

6
+

t5

120
− t7

5040
+

61t9

23224320
− · · · − t31

1062664199886151693758358595882188800
,

and so on.
The exact solution of (7.1) is y(t) = sin t. The 5-term solutions obtained via:

• Adomian decomposition method (ADM) [17]
• Variational iteration method (VIM) [26]
• Homotopy analysis method (HAM) [2]
• Optimal homotopy asymptotic method (OHAM) [27]

all yield:

y(t) = t− t3

6
+

t5

120
− t7

5040
+

t9

362880
− t11

39916800
+

t13

6227020800

− t15

1307674368000
+

t17

355687428096000
. (7.3)

The 4-term OHAM solution [27] of (7.1) is:

y(t) = t− 0.166665t3 + 0.00832857t5 − 0.000192105t7. (7.4)

We compare 5th approximation solution (SAM) and 5-term solutions ( ADM, VIM, HAM) with exact solution in
Figure 1 and 4th approximation solution (SAM) with 4-term solution (OHAM) in Figure 2. The absolute errors in
computation are shown in Figures 3–4. It can be observed that SAM solution is better than the solution obtained
using other methods.

8. Figures

Remark 8.1. While the ADM, VIM, HAM, and OHAM solutions presented in [2, 17, 26, 27] were limited to the
interval [0, 1], our SAM approach has successfully extended the solution to the wider interval [0, 8].

9. Conclusions

Using SAM, we have successfully solved nonlinear differential equations with proportional delay. Our analysis has
established stability, uniqueness, and existence results for several specific types of time-dependent DDEs. Furthermore,
we have examined the convergence of series solutions for both pantograph and Ambartsumian equations. The integer-
order analysis developed for DEs with proportional delay and time-dependent DDEs has been successfully extended
to the fractional-order case using the Caputo derivative. Numerical examples validate all theoretical results.

2 4 6 8
t

-1.0

-0.5

0.5

1.0

1.5

2.0

y

SAM

ADM/VIM/HAM

Exact

Figure 1. Comparison of SAM,
ADM, VIM, and HAM solutions
with the exact solution of Equation
(7.1).

1 2 3 4 5
t

-5

-4

-3

-2

-1

1

y

SAM

OHAM

Exact

Figure 2. Comparison of SAM and
OHAM solutions with exact solution
of Equation (7.1).
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Figure 3. Comparison of ab-
solute errors in SAM and
ADM/VIM/HAM solutions.
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Figure 4. Comparison of absolute
errors in SAM and OHAM solutions.
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