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Abstract 

This research paper presents a new approach to controlling unknown nonlinear systems using the Group Method of 

Data Handling (GMDH) neural network. The proposed Enhanced Data-Driven Quantized Model-Free Adaptive 

Control structure addresses the challenge of data quantization in Data-Driven Control Systems, which results from 

data loss and affects the performance of the Model-Free Adaptive Control (MFAC). In this study, the output quantized 

data is fed to the GMDH block, which derives a model to estimate the system's actual output based on the predictive 

feature of the network. The controller generates the input control signal based on the estimated output data. The 

stability analysis of the proposed control structure has been investigated through the Lyapunov theory. The proposed 

structure has been tested and compared against the traditional MFAC controller through simulation. The results 

illustrate the proposed approach's advantages in overcoming data quantization challenges in Data-Driven Control 

methods. 
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1. Introduction 
Over the years, Model-Based Control (MBC) has been 

used to design control systems for various 

applications. In [1], the authors have implemented 

Dynamic Sliding Mode Control for Nonlinear Systems 

using a Sliding Mode Observer. In another instance, 

[2] focused on the stability of closed-loop hybrid 

dynamical systems with the Model-Predictive Control 

Approach. However, the increasing use of networked 

systems and the reliance on data interpretation have 

added complexity to industrial systems. Due to this 

complexity, it is not easy to extract a mathematical 

model that is precise and accurate in describing the 

dynamics of such systems. These challenges have led 

to developing a novel control approach called Data-

Driven Control (DDC). This approach fundamentally 

alters the concept of control structures, as it solely 

relies on the data gathered from the plant and requires 

zero knowledge of the system's dynamics to generate 

the control signal. 

In recent years, extensive developments have been 

made in DDC approaches based on time series 

analysis and learning-based algorithms [3]. Some of 

these approaches include Data-driven Optimal Control 

[4], Unfalsified Control [5], Iterative Feedback Tuning 

(IFT) [6], Model-Free Adaptive Control (MFAC) [7], 

and Virtual Reference Feedback Tuning [8]. DDC 

approaches are classified into three types: Online 

methods, such as Model-Free Adaptive Control 

(MFAC) [9]; Offline approaches, such as Virtual 

Reference Feedback Tuning [8]; and Hybrid methods, 

such as Iterative Learning Control [10]. Among the 

mentioned methods, MFAC is efficient for time-

varying, nonlinear discrete-time systems. 

Model-Free Adaptive Control (MFAC) was initially 

introduced by Hou in 1994 [3]. The primary idea 

behind this approach is to estimate the nonlinear 

discrete-time system using an equivalent linearized 

model. The linearization process involves using a 

concept known as Pseudo-Partial Derivative (PPD), 

which is estimated based on the input and output data 

from the control plant. The MFAC method is divided 

into three types based on the linearization approach 

used within the controller structure: Compact Form 

(CF), Partial Form (PF), and Full Form (FF) [3]. 

Compared to other linearization methods for nonlinear 
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functions, the PPD approach used by the MFAC has 

several advantages. For instance, it does not require a 

time delay on the controlled system and can easily 

extend to MIMO systems [3]. Due to its superiority in 

controlling complex systems, the MFAC method can 

be applied to discrete-time and high-dimensional 

unknown nonlinear systems [11]. 

In recent years, Networked Controlled Systems have 

gained immense popularity due to the numerous 

benefits of digital communication [12]. These systems 

connect various elements through a digital network, 

simplifying installation and reducing costs associated 

with maintenance and wiring. However, deploying 

this approach can be challenging due to the 

communication load generated by the transmitted data. 

High-resolution data samples can cause problems in 

conditions with limited bandwidth or transmission 

noise, such as underwater or in tunnels [13]. To tackle 

this issue, data quantization can reduce the amount of 

transferred data without compromising the intended 

message. This method involves removing some data 

levels to reduce the resolution of the data sets, making 

it feasible to send them on mediums with limited 

bandwidth [14]. Numerous case studies have 

successfully used this technique, including [15, 16]. 

Numerous scholars worldwide have been drawn to the 

benefits of NCSs and have tried to address the problem 

of quantized control in their efforts. One example is 

[17], where the authors tackled the issue of quantized 

feedback stabilization for linear time-invariant 

systems in continuous and discrete-time scenarios. 

This method yields global asymptotic stability when 

applied to linear time-invariant feedback-stabilizable 

systems. However, the contributions of this paper are 

limited to linear systems. One can refer to the study 

[18] to address quantized control in nonlinear systems. 

In this paper, the input quantization for nonlinear 

systems is investigated. It concerns the global 

asymptotic stabilization of continuous-time systems 

subject to data quantization. Nonetheless, the main 

drawback of this work is that it only works in 

situations with full knowledge of the system's 

dynamics. The mentioned papers are presented as 

examples to address the issue of quantized control and 

methods for ensuring its convergence and stability. 

Some papers dealing with Networked Control Systems 

(NCSs) and quantized control are provided as follows: 

The problems of quantized stabilization and 

control for NCSs are provided in [19]. This study 

outlines the problem of quantized stabilization and 

control for NCSs by modeling an NCS system to 

address both delay and quantization levels. Using the 

Lyapunov function and Linear Matrix Inequalities 

(LMI) provides sufficient conditions for stabilizing 

this system. However, this work is model-based, and 

the presence of LMI equations makes the stabilization 

process complex. [16] combines the quantized control 

of NCSs with data-driven controls. This article 

explores the stability of the Model-Free Adaptive 

Control (MFAC) in systems employing quantized data 

in two separate signal quantization techniques. 

Although the quantization method utilized in these 

articles spans the whole period of the experiment, data 

quantization results in the loss of some of the system's 

usable and practical data, which might affect the 

control action of the data-driven controller. To the best 

of the authors' knowledge, only some references have 

paid attention to the issues resulting from data 

quantization in the performance of data-driven control 

structures. The primary motivation of this article is to 

fill this gap.  

This research aims to solve the problems caused by 

data quantization in the performance of data-driven 

control structures by incorporating the Group Method 

of Data Handling (GMDH) neural network into the 

control loop. The quantization process often results in 

missing data, which is approximated and sent to the 

MFAC through the GMDH neural network. The 

controller would then use the approximated data to 

generate the control signal. This approach ensures that 

the controller does not detect errors in the received 

data and that the control signal functions flawlessly. 

The GMDH neural network is an excellent tool for 

prediction problems, especially with nonlinear 

systems. [20-24] provide more information about this 

topic. Additionally, another GMDH network has been 

trained to estimate the value of the PPD. This 

estimated value is then replaced with the recursive 

equations in the conventional MFAC structure, 

making the calculation process more accessible for the 

controller. The contributions to this paper are listed 

below:  

I. A new control structure is built on the 

MFAC based on the GMDH neural 

network and output data quantization. 

II. The lack of access to the missed output 

data due to the quantization is fulfilled 

using the GMDH NN in the control 

loop.  

The following article is structured as follows: In 

Section 2, the problem definition is provided. In 

Section 3, one can find a discussion about the 

suggested EDD-MFAC structure for nonlinear 

systems, including the prerequisites for its 

convergence. In Section 4, we present simulations of 

some practical systems to demonstrate the 

effectiveness of the proposed control structure. 

Finally, the paper is concluded in Section 5. 

 
2. Problem Definition 

2.1. Problem Considerations  

Consider the nonlinear system below: 
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𝑦(𝑐 + 1) = 𝑔 (𝑦(𝑐) , … , 𝑦(𝑐 − 𝑛𝑦), 𝑢(𝑐), … , 𝑢(𝑐 −

                                        𝑛𝑢))                                      (1)                                                          

 

Where 𝑦(𝑐) = [𝑦1(𝑐), … , 𝑦𝑡(𝑐)]
′ is the system output, 

𝑢(𝑐) = [𝑢1(𝑐), … , 𝑢𝑡(𝑐)]
′  is the control input, 𝑛𝑦, 𝑛𝑢 

are the unknown orders, and 𝑔(. ) is an unknown 

nonlinear function. 

For facilitation, the following assumptions are 

assumed to be satisfied. 

Assumption 1: The partial derivation of 𝑔(. ) with 

respect to control input 𝑢(𝑐), … , 𝑢(𝑐 − 𝑛𝑢) is 

continuous. 

Assumption 2: System (1) is generalized Lipschitz, 

i.e., the following condition is considered to be met: 

 
‖𝛥𝒚(𝐶 + 1)‖2 ≤ 𝐿‖𝛥𝒖(𝐶)‖2; ∀ 𝑐 

 

Where ‖𝐿‖2 > 0, Δui(𝜏) = ui(𝜏) – ui(𝜏 –1) , and Δyi(𝜏) 

= yi(𝜏) – yi(𝜏 –1); i= 1, …, 𝜏. 

Notice 1: Assumption 1 is a general condition in 

controller design. Furthermore, assumption 2 specifies 

that the rate of change in the system’s output is related 

to the rate of change in the system’s input. In other 

words, if the rate of change in the system’s input is 

bounded, the rate of change in the system’s output is 

finite, too. Both assumptions 1 and 2 are feasible, and 

many practical systems meet both criteria [25]. If 

assumptions 1 and 2 are met, system (1) can be 

linearized through an equivalent dynamical 

linearization model. 

Theorem1 [25]: Given that the nonlinear system (1) 

meets assumptions 1, 2, and ‖𝐿‖2≠0, there exists a 

time-varying Pseudo–Partial Derivative (PPD) 

parameter, such that system (1) can be translated to the 

following linear form: 

 

Δ𝑦(𝑐 + 1) = 𝑃(𝑐)Δ𝑢(𝑐)                          (2) 

𝑃(𝑐) = [

𝑝11(𝑐) 𝑝12(𝑐) ⋯ 𝑝1𝑡(𝑐)

𝑝21(𝑐) 𝑝22(𝑐) ⋯ 𝑝2𝑡(𝑐)
⋮ ⋮ ⋮ ⋮

𝑝𝜏1(𝑐) 𝑝𝜏2(𝑐) ⋯ 𝑝𝜏𝜏(𝑐)

], 

 

 𝑝𝑖𝑗(𝑐) =
Δ𝑦𝑖(𝑐+1)

Δ𝑢𝑗(𝑐)
    

    
And ‖𝑃(𝑐)‖ ≤ 𝜉. 

Relation (2) describes the ultimate structure of the 

traditional MFAC structure with the compact form 

dynamic linearization (CFDL) model. This model 

modulates an unknown system like (1) as an estimated 

linear dynamical relation (2). As one can infer from 

(2), this relation is defined by changes in the system's 

output and input data. In order to ensure the accurate 

performance of the MFAC, the exact value of the PPD 

parameter must be tracked. 

2.2. Quantization Formulation 

As previously stated, quantization is required to 

deliver the data in lower resolutions when the system 

performs in environments with limited bandwidth.  

The quantization technique utilized in this study is of 

the logarithmic format [16], as explained below: 

 

𝐴 = {±𝜅𝑖: 𝜅𝑖 = 𝛽𝑖𝜅0, 𝑖 = 0, ±1,±2,… } ∪ {0}, 0 <
𝛽 <                             1, 𝜅0 > 0                                              

(3) 

 

Where the parameter 𝛽 is related to the quantization 

density. The associated quantizer 𝑑(. ) is defined as: 

 

        𝑑(𝜐) = {
𝜅𝑖          

1

1+𝜎
𝜅𝑖 < 𝜐 ≤

1

1−𝜎
𝜅𝑖  

       0                            𝜐 = 0                   
−𝑑(−𝜐)                 𝜐 < 0                     

   

(4)   

           

Which 𝜎 =
1−𝛽

1+𝛽
 . The quantizer described in (4) is 

found to be symmetric, which indicates that 𝑑(−𝜐) =
−𝑑(𝜐). 
In the following, we delve into the quantized model-

free adaptive control structure to investigate the 

drawbacks caused by data quantization in the 

performance of such a Data-driven controller scheme. 

2.3. Quantized Model-Free Adaptive Control 

After quantizing the system's output data using the 

mentioned technique, the controller algorithm for the 

MFAC structure is given by: 

 

𝑃̂(𝑐) = 𝑃̂(𝑐 − 1) +
ΓΔ𝑢(𝑐−1)

𝜇+‖Δ𝑢(𝑐−1)‖2
2 (𝑑Δ(Δ𝑦(𝑐)) −

                       𝑃̂(𝑐 − 1)Δ𝑢(𝑐 − 1))                               (5) 

 

 𝑢(𝑐) = 𝑢(𝑐 − 1) +
𝜔𝑃̂(𝑐)

𝜆+‖𝑃̂(𝑐)‖2
2 (𝑅(𝑐) − 𝑑𝑦(𝑦(𝑐)))       

(6) 

 

Where, Γ >∈ (0.1), 𝜔 ∈ (0.1), 𝜇 > 0, 𝜆 > 0  are 

weigh factors. 

In order to guarantee the convergence of this 

algorithm, a reset mechanism has been proposed as 

follows [16]: 

𝑃̂(𝑐) = 𝑃̂(1),   𝑖𝑓 ‖𝑃̂(𝑐)‖
2

2
≤ 𝜀, 𝑜𝑟‖Δ𝑢(𝑐 − 1)‖2

2 ≤ 𝜀               

(7) 

in which, 𝑝̂(1) is the initial value of 𝑝̂(𝑐).  

As mentioned earlier, the data quantization algorithm 

leads to the loss of some of the valuable system data, 

which can negatively affect the performance of the 

data-driven controller. This article suggests a novel 

structure based on the GMDH neural network to 

overcome this issue. Section 3 explains this approach. 
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3. Proposed EDD-QMFAC Structure 

This section presents a concise yet thorough 

description of the GMDH neural network utilized in 

this study to establish the foundation of the proposed 

structure. A clear and detailed explanation of the 

proposed structure is provided. The section culminates 

 

Figure 1. The Structure of GMDH NN 

with an in-depth analysis of the stability of the 

suggested structure, which conclusively demonstrates 

its practicality and effectiveness. 

3.1. GMDH Structure 

The Group Method of Data Handling (GMDH) is a 

robust hierarchical free lamination polynomial neural 

network that surpasses other neural networks in its 

ability to set the number of nodes and layers 

objectively. In GMDH, the number of neurons in the 

first layer corresponds to the number of double 

permutations of the system inputs, and the number of 

neurons in each subsequent layer is based on the 

double permutations of the neurons in the previous 

layer that satisfy the requirement to advance to the 

next level. The number of hidden layers in this 

technique may be pre-specified or adjusted based on 

an external criteria threshold value [26]. Figure 1 

provides a clear depiction of the straightforward 

structure of the GMDH.  

Consider the following nonlinear system to have a 

better grasp of this algorithm: 

 

                           𝑦 = 𝐺(𝜒1, 𝜒2, … , 𝜒𝜏)                           (8) 

 

Where 𝜒1, 𝜒2, … , 𝜒𝜏   are input variables, and 𝑦 is the 

output variable. To rewrite the connection between the 

system's inputs and outputs, we must use the 

Kolmogorov-Gabor form [20]. 

𝑦(𝜏) = 𝑧0 + ∑ 𝑧𝑖𝜒𝑖 + ∑ ∑ 𝑧𝑖𝑗
𝜏
𝑗=1 𝜒𝑖𝜒𝑗

𝜏
𝑖=1

𝜏
𝑖=1 +

                  ∑ ∑ ∑ 𝑧𝜒𝑖𝜒𝑗𝜒𝑘
𝜏
𝑘=1

𝜏
𝑗=1

𝜏
𝑖=1 + ⋯                     (9) 

 

 

Where, Z= [𝑧0, 𝑧𝑖 , 𝑧𝑗 , 𝑧𝑖𝑗 , 𝑧𝑖𝑗𝑘 , … ] ∀(𝑖, 𝑗, 𝑘 =

1,2,3, … , 𝜏) is the coefficient matrix. 

The output 𝑦̂ of a neuron with two inputs 𝜒𝑖 , 

 

Figure 2. The Block Diagram of the Proposed Control 

Structure 

and  𝜒𝑗  could be approximated as follows: 

𝑦̂ = 𝑧0 + 𝑧1𝜒𝑖 + 𝑧2𝜒𝑗 + 𝑧3𝜒𝑖
2 + 𝑧4𝜒𝑗

2 + 𝑧5𝜒𝑖𝜒𝑗 = 𝑍𝜒         

(10) 

Where, 𝜒 is defined as below: 

  

𝜒

=

[
 
 
 
 
1 𝜒𝑖(1) 𝜒𝑗(1) 𝜒𝑖

2(1) 𝜒𝑗
2(1)  𝜒𝑖(1) 𝜒𝑗(1)

1
⋮

𝜒𝑖(2)
⋮

𝜒𝑗(2)

⋮

𝜒𝑖
2(2) 𝜒𝑗

2(2)

⋮ ⋮

 𝜒𝑖(2) 𝜒𝑗(2)

⋮

1 𝜒𝑖(𝑐) 𝜒𝑗(𝑐) 𝜒𝑖
2(𝑐) 𝜒𝑗

2(𝑐)  𝜒𝑖(𝑐) 𝜒𝑗(𝑐) ]
 
 
 
 

 

 

Therefore, 𝑍 = (𝜒𝑇𝜒)−1𝜒′𝑦̂. 

 

3.2. Enhanced Data-Driven Quantized Model-Free 

Adaptive Control 

The data quantization technique reduces the resolution 

of the data by removing some data levels to send data 

across a medium with limited bandwidth. However, 

this technique can affect the QMFAC's performance, 

which relies on the system's data. To overcome these 

challenges, a new structure based on the predictive 

function of the GMDH neural network is proposed. 

 

The output quantized data in the proposed control 

structure is initially sent to the GMDH NN block. The 

GMDH then derives a model for predicting the plant's 

output data, which is then sent to the MFAC block. 

The MFAC generates the appropriate control signal, 

thus enhancing the QMFAC's performance and 

eliminating the challenges of data quantization. Figure 

2 illustrates this structure. 

The accuracy of the 𝑝̂(𝑐), is contingent on the 

precision of the recursive relation (5), which can be 

prone to errors when dealing with large data systems. 

However, to address this issue, the suggested structure 

has implemented an additional GMDH neural network 

to predict this parameter more accurately.  
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Figure 2 demonstrates the positive impact of 

integrating the GMDH NN in the control loop, 

resulting in a more precise and accurate control signal. 

The simulation results confirm that utilizing the 

GMDH neural network's capabilities has resolved the 

challenges of data quantization in data-driven 

controllers, such as Model-Free Adaptive control. 

Assumption 3: We assumed that the GMDH NN has 

been accurately tuned for parameters such as the 

number of neurons and layers. 

3.3. Stability Analysis 

The sector-bound approach has been implemented in 

this paper to accurately address the quantization error. 

It is worth noting that a sector-bound expression is 

presented as an illustration [27]. An illustration of a 

sector-bound expression is 𝑞(ℒ) = (Δ(ℒ) + 1)ℒ, 

where |Δ(ℒ)| < 𝜎  for a determined signal ℒ and the 

quantizer 𝑞(ℒ). The ensuing equations are obtained, 

utilizing the sector-bound approach, and with the 

denotation of 𝑑Δ(. ), 𝑑y(. ), 𝑑e(. ) as quantization 

densities: 

 

𝑑Δ(Δ𝑦(𝑐)) = ΞΔΔ𝑦(𝑐) + Δ𝑦(𝑐)                     (11) 

𝑑y(𝑦(𝑐)) = Ξ𝑦𝑦(𝑐) + 𝑦(𝑐)                                (12) 

𝑑e(𝑒(𝑐)) = Ξe𝑒(𝑐) + 𝑒(𝑐)                                 (13) 

                           

Where, |ΞΔ| ≤ 𝜎Δ, |Ξy| ≤ 𝜎y, |Ξe| ≤ 𝜎e. 

The BIBO stability analysis of the PPD estimation and 

its convergence has been investigate on our previous 

work [28]. Now, from (12) and (6), for analyzing the 

bound of the tracking error, we have: 

𝑢(𝑐) = 𝑢(𝑐 − 1)

+
𝜔𝑃̂(𝑐)

𝜆 + ‖𝑃̂(𝑐)‖
2

2 (𝑅(𝑐) − Ξ𝑦𝑦(𝑐)

+ 𝑦(𝑐)) 

       = 𝑢(𝑐 − 1) +
𝜔𝑃̂(𝑐)

𝜆+‖𝑃̂(𝑐)‖2
2 (𝑒(𝑐) − Ξ𝑦𝑦(𝑐))                   

(14) 

 

By substituting (14) in (2), the following is obtained: 
 

𝑒(𝑐 + 1) = 𝑒(𝑐) (1 −
𝜔𝑃̂(𝑐)𝑃(𝑐)

𝜆 + 𝑃̂2(𝑐)
(1 + Ξ𝑦))

+ Ξ𝑦𝑅(𝑐) (
𝜔𝑃̂(𝑐)𝑃(𝑐)

𝜆 + 𝑃̂2(𝑐)
) 

  = 𝑣(𝑐)Ξ𝑦𝑅(𝑐) + (1 − 𝑣(𝑐)(1 +

Ξ𝑦)) 𝑒(𝑐)                                                                              (15) 

Where, 𝑣(𝑐) =
𝜔𝑃̂(𝑐)𝑃(𝑐)

𝜆+𝑃̂2(𝑐)
. From (15), we obtain: 

 

‖𝑒(𝑐 + 1)‖2 < ‖1 − 𝑣(𝑐)(1 +

Ξ𝑦)‖
2
‖𝑒(𝑐)‖2+𝜎y𝑅(𝑐)                         (16) 

Hence, 𝑃̂(𝑐) is bounded; if the 𝜔, 𝜆 chosen in a way 

that  
(𝜔𝑏)2

4
<  𝜆 is satisfied, then 0 < 𝑣(𝑐) < 1. 

Furthermore, since 𝜎 =
1−𝛽

1+𝛽
, then 0 < 𝜎y < 1, and 

‖Ξ𝑦‖
2

< 1 . There exists a constant like Κ such that:   

‖1 − 𝑣(𝑐)(1 + Ξ𝑦)‖
2

≤ Κ < 1. From (16) we attain: 

 

lim
𝑘→∞

‖𝑒(𝑐)‖2 ≤
𝜎y𝑅(𝑐)

Κ
 

 
It has been proven that the tracking error is uniformly 

bounded, and this bound is related to both the 

quantization level and the asddesired signal. 

 

3.4. The Flow Chart of The Proposed Method 

In this section, we have provided a flow chart to help 

readers better understand our proposed method. The 

following chart clearly shows the steps required for the 

proposed method discussed in this article. 
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Table 1. Flow Chart of Proposed Method 

 

 

 
 

Figure 3. Three-Connected Tanks  

 

4. Simulation 

The effectiveness of the proposed controller was 

demonstrated through the application of the controller 

on two practical systems. The systems were explicitly 

chosen to showcase the versatility and adaptability of 

the controller in real-world scenarios. The results 

obtained from the testing proved that the proposed 

controller could effectively control complex systems 

and make significant improvements in their 

performance. These findings highlight the potential 

impact of this research and its ability to help solve 

real-world problems. 

 

4.1. The Connected Three Tank System 

The three-tank system is a widely recognized 

nonlinear system characterized by a complex three-

dimensional structure [29]. The equations of this 

system is provided below: 

 

𝑆𝐴

𝑑ℎ1

𝑑𝑡
= 𝑂1(𝑐) − 𝑂13(𝑐) − 𝑂10 

 

𝑆𝐴

𝑑ℎ3

𝑑𝑡
= 𝑂13(𝑐) − 𝑂32(𝑐) 

 

𝑆𝐴

𝑑ℎ2

𝑑𝑡
= 𝑂2(𝑐) − 𝑂32(𝑐) − 𝑂20 

 

𝑂13(𝑐) = 𝑣1𝑆𝑛𝑠𝑖𝑔𝑛(ℎ1(𝑐)

− ℎ3(𝑐))√(2𝑔|ℎ1(𝑐) − ℎ3(𝑐)|) 
 

 

𝑂32(𝑐) = 𝑣2𝑆𝑛𝑠𝑖𝑔𝑛(ℎ3(𝑐)

− ℎ2(𝑐))√(2𝑔|ℎ3(𝑐) − ℎ2(𝑐)|) 

 

𝑂20(𝑐) = 𝑣ℎ2𝑆𝑛𝑠𝑖𝑔𝑛(ℎ2(𝑐))√(2𝑔|ℎ2(𝑐)|) 

 

𝑂10(𝑐) = 𝑣ℎ1𝑆𝑛𝑠𝑖𝑔𝑛(ℎ1(𝑐))√(2𝑔|ℎ1(𝑐)|) 

 

Table 2 gives the parameters of the three-connected 

tanks used in this simulation. 

Table 1 The Parameters of the Three-Connected Tank System 

Description Parameters 

Liquid level of tank ith 

(m) 

ℎ𝑖 

Supplying flow rate of 

pump ith (m3/s) 

𝑝𝑖 = 𝑢𝑖 

Outflow coefficient 

between tank 1 and tank 

3 

𝑣1=0.22 

Outflow coefficient 

between tank 2 and tank 

3 

𝑣2  =0.27 

 

Data Gathering

• In this stage, the case study will be
conducted, and data from the
systems will be collected.

Data Quantization

• In this stage, we will quantize the
data collected from stage 1,
assuming that the system output
data is quantized, as per the
quantization algorithm mentioned
earlier.

Traditional MFAC

• In this stage, the quantized data
will be delivered to the MFAC
controller, which will initialize the
GMDH neural network using the
MFAC equations.

The Prediction of the 
missed data

• In this stage, the GMDH NN is
used to predict the missing data
due to quantization. The GMDH
would also estimate the value of
the PPD parameter.

Control Signal Generation

• In this stage, the predicted data
from the previous section is sent to
the MFAC. The controller then
generates control input signals
based on this data.

Reference tracking

• In this stage, the generated control
input will be applied to the plant to
track a predetermined reference
signal.
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Outflow coefficient from 

tank 1 to reservoir 

𝑣ℎ1=0.28 

Outflow coefficient from 

tank 2 to reservoir 

𝑣ℎ2=0.4 

Maximum level reading 

ability in tank 1 

ℎ1𝑚𝑎𝑥=0.6501 

Maximum level reading 

ability in tank 2 

ℎ2𝑚𝑎𝑥 =0.66 

Tank cross-section 𝑆𝐴=0.0154 

Pipe cross-section 𝑆𝑛=5×10-5
 

Sampling Time 0.25 sec
 

 

To demonstrate the proposed structure's efficacy, a 

comparison has been conducted between a PID control 

method [29], the conventional MFAC, and the 

proposed structure. The simulation initialization 

process is identical for each controller, and the control 

objective is to finely regulate the liquid level in Tanks 

1 and 2 based on a predetermined reference. As per the 

research conducted in [29], the PID parameters are as 

follows: 

 

[
𝑢1(𝑐 + 1)

𝑢2(𝑐 + 1)
] = [

𝑢1(𝑐)

𝑢2(𝑐)
] + [

𝐾𝑝11 𝐾𝑖11 𝐾𝑑11 𝐾𝑝12 𝐾𝑖12 𝐾𝑑12

𝐾𝑝21 𝐾𝑖21 𝐾𝑑21 𝐾𝑝22 𝐾𝑖22 𝐾𝑑22
]

×

[
 
 
 
 
 
 

𝑒1(𝑐) − 𝑒1(𝑐 − 1)

𝑒1(𝑐)

𝑒1(𝑐) − 2𝑒1(𝑐) + 𝑒1(𝑐 − 2)

𝑒2(𝑐) − 𝑒2(𝑐 − 1)

𝑒2(𝑐)

𝑒2(𝑐) − 2𝑒2(𝑐) + 𝑒2(𝑐 − 2)]
 
 
 
 
 
 

 

 

 

Where, Kpij, Ki i j, and Kd i j are determined as, 

 
𝐾𝑝11  =  0.00512,𝐾𝑖11  =  0.00063,𝐾𝑑11  =  0.00721; 
𝐾𝑝12  =  0.00131,𝐾𝑖12  =  0.00005,𝐾𝑑12  =  0.00130; 
𝐾𝑝21  =  0.00267,𝐾𝑖21  =  0.00027,𝐾𝑑21  =  0.00242; 
𝐾𝑝22  =  0.00985,𝐾𝑖22  =  0.00101,𝐾𝑑22  =  0.00642. 

 

To design the traditional MFAC and the proposed 

EDD-MFAC, the parameters are set as below: 
𝜂 = 0.5, 𝜖 = 10−4, 𝜔 = 1, 𝜆 = 1, 

 

Figure 4 Tracking Performance of Tank 1 

  𝜇 = 0.0001, 𝑝̂(1) = 𝑝̂(2) = 𝑝̂(3) = [
1 0
0 1

] 

Figure 4 shows Tank 1's tracking performance with 

three controllers: PID, traditional MFAC, and the 

proposed control structure. Until T = 600 sec, the 

performance of all three controllers is almost identical. 

However, after this point, the PID and traditional 

MFAC controllers show distortions in the system's 

output due to data quantization. In contrast, the 

proposed structure prevents this issue and exhibits 

zero distortion using the actual output data calculated 

by the GMDH NN.  

 

The liquid level in Tank 1 fluctuated sharply when the 

reference signal in Tank 2 changed at T = 1000 Secs. 

However, the proposed structure emerges as the best 

controller after this point. All of the systems 

eventually stabilized at T = 1650. However, the output 

curves of the PID and traditional MFAC controllers 

have distortions due to data quantization. On the other 

hand, the output curve of the system controlled by the 

proposed structure stabilized perfectly without any 

distortions, indicating that this structure can solve the 

data quantization challenges on the MFAC. 

Figure 5 illustrates Tank 2's tracking performance. It 

is evident from this figure that the proposed structure 

significantly improved the MFAC's performance.  

Figures 7 and 8 depict the input control signals 

generated by the PID, the conventional QMFAC, and 

the suggested control structure. The signals produced 

by the PID and the QMFAC are step-shaped, 

indicating that these controllers do not precisely 

control the system in a quantized data scenario. In 

contrast, this paper's proposed structure's control 

signal has a perfectly smooth curve. 

The GMDH inputs in this simulation consist of the 

quantized level height of the liquid in Tanks 1 and 2 
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and the control input from the previous moments. 

 

Figure 5. Tracking Performance of Tank 2 
 

 

Figure 6. Tracking Performance of Tank 3 

 

Figure 7. Control Input Signal for Tank 1 

 

Figure 8. Control Input Signal for Tank 2 

 

 

Figure 9.  Subway Train Systems 

 

4.2. The Subway Train System 

Modern-day subway trains are controlled by 

sophisticated digital systems [30, 31]. Based on the 

train's discrete-time concept, these digital control 

algorithms create exclusively discrete-time control 

signals. Figure 9 depicts a general point-mass model 

of a subway train, where, 𝐹𝑁 denotes the support force, 

𝑣(𝑐) the subway train speed, 𝑢𝑓(𝑐) the traction 

braking force, and 𝐺𝑎(𝑐) and 𝐺𝑏(𝑐) the supplementary 

and basic resistance values. These supplementary 

resistances comprise ramp, curve, and tunnel 

resistance. The motion dynamic model of a subway 

train is presented below based on this point-mass 

model: 

𝑣(𝑐 + 1) = 𝑣(𝑐) +
£

𝑀𝑡

(𝑢𝑓(𝑐) − 𝐺𝑎(𝑐) − 𝐺𝑏(𝑐)) 

Where £, is the sample interval, and 𝑀𝑡, represents the 

subway mass. Table 1 shows the simulation 

parameters, where 𝛼, is the slope of the subway train 

path. This table illustrates that several parameters in 

this simulation are considered to be time-varying. 

In Table 3 the parameters of the subway train system 

which are used in this simulation are given.  
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Figure 10. Tracking performance of the subway system 

 

Table 2 The simulation parameters 

Variable Value 

𝑀𝑡 ℎ𝑖 

𝐺 𝑝𝑖 = 𝑢𝑖 

𝐺𝑏 𝑣1=0.22 

𝐺𝑎𝑎 𝑣2  =0.27 

𝑉
max (

𝑘𝑚
ℎ

)
 80 

Sampling Time 0.2 𝑠𝑒𝑐 

In this section, we compare the performance of the 

proposed technique with the QMFAC method of [40] 

in train control. The suggested EDD-QMFAC has the 

same initial settings as the QMFAC in [40], which are: 

𝑢𝑓(1) = 0.001, 𝑢𝑓(2) = 1.342, 𝐹̂𝑠(1) = 0.137 

Figure 11 highlights the proposed control structure's 

superior performance compared to the traditional 

MFAC in the train problem. The main objective is to 

adjust the train's speed and ensure that it follows a 

predetermined reference signal, regardless of the 

changes in the path and time. The proposed controller's 

predictive feature is evaluated by considering two 

types of slopes that may occur in the train's path. The 

positive slope type would decrease the train's speed if 

it ran at the same speed with the same forces, while the 

negative path slope would increase its speed. The 

GMDH inputs in this simulation include the road 

slope, the train's quantized speed, and the preceding 

moment control signal. 

Figure 11 demonstrates that the train's speed is always 

kept within the reference signal range during the trial 

period. Whenever the slope is positive, the control 

signal immediately triggers the train's engine to 

generate the necessary force that overcomes the slope,  

 

Figure 11. Control Signal Generated by MFAC for the Subway 

System 

 

Figure 12. Error Diagram 

 

Figure 13. The Training Data 
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thus increasing the train's power and maintaining its 

speed within the predetermined range. Consequently, 

the system's performance is not affected by any train 

path changes. 

On the other hand, when the slope is negative, the 

controller immediately predicts that the train will be 

affected by it and generates a control input that causes 

the engine to decrease its power. This ensures that the 

train's speed remains within the reference signal range. 

The proposed controller boasts a predictive feature 

that enables the system to stay within the range and 

accurately track the reference signal. 

In contrast, traditional MFAC exhibits peaks in 

response to path slopes, making it difficult for the 

controller to predict and manage the slope. However, 

the proposed structure can effortlessly predict the 

slope and generate the necessary control signal to 

compensate for these slope changes. As depicted in 

Figure 11, the proposed controller can track the 

reference signal perfectly, with no peaks whatsoever. 

Figure 11 also demonstrates that the proposed 

controller outperforms the conventional QMFAC in 

the quantized data scenario. The suggested structure is 

much more efficient in correcting the distortions 

generated by the data quantization algorithm. As 

illustrated in Fig.10, the traditional MFAC exhibits 

significant distortions throughout the period that 

substantially increase the steady-state error. On the 

other hand, the proposed structure efficiently 

eliminates these distortions and can manage the 

tracking problem with superior accuracy, inevitably 

reducing the error. 

Figure 12 presents the control signal generated by 

traditional MFAC and EDD_MFAC. As observed, the 

signal generated by the EDD-MFAC structure is more 

precise and accurately represents the predetermined 

reference signal. 

Moving on to Figure 13, it demonstrates how the 

GMDH neural network significantly reduces errors. 

Figure 13 shows the data converging to a 45° slope, 

indicating that the GMDH has effectively trained the 

data set. Despite missing some of the system's data 

during the quantization periods, the GMDH neural 

network predicts the output data precisely. 

Table 4 highlights the proposed structure's superiority 

over the traditional MFAC. The data shows a 

significant difference in IAE, ISE, and steady-state 

error, providing undeniable evidence that the proposed 

structure outperforms the conventional controller. 

Table 4. proposed structure's superiority over the traditional 

MFAC 

Index MFAC EDD-MFAC 

Ess 3.92 3.08 

IAE Error 2.29 × 106 1.44 × 106 

ISE Error 79.99 79.99 

PPD 7.18 9.14 

 

5. Conclusion 

This paper studies the Enhanced Quantized Model-

Free Adaptive Control (EDD-MFAC) structure 

proposed for controlling an unknown class of 

nonlinear systems in the presence of data quantization. 

It introduces the standard quantized model-free 

adaptive controller and then discusses the challenges 

it poses while dealing with data quantization. To 

overcome the limitations of the traditional MFAC, the 

proposed structure in this study integrates the GMDH 

NN in the control loop. The GMDH neural network 

estimates the actual output data from the plant's 

quantized output data. The estimated output data is 

then used in the MFAC block to generate the control 

input signal instead of the quantized data. This 

approach eliminates the data quantization issues and 

reduces computational errors, making it more efficient 

than the traditional MFAC. The paper explains the 

GMDH neural network and its application in the 

proposed EDD-MFAC structure. The simulation 

results demonstrate that the suggested structure 

effectively eliminates distortions and interruptions 

caused by the quantized data, making it an ideal 

solution for controlling nonlinear systems in real-

world applications. The proposed method can be 

applied to control both linear and nonlinear systems 

and, in both MIMO, and SISO scenarios as evidenced 

by the case studies investigated by this paper. 
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