| مهندسی مکانیک دانشگاه تبریز | ||
| Volume 54, Issue 1 - Serial Number 106, January 0, Pages 91-100 PDF (1.72 M) | ||
| Document Type: Original Article | ||
| DOI: 10.22034/jmeut.2024.59722.3352 | ||
| References | ||
|
[1] Newton I, Opticks: or, a Treatise of the Reflexions, Refractions, Inflexions and Colours of Light, W. & J. Innys, London, 2nd Edition; 1718, 25-27. [2] Davis J L, Hoburg J F. Wire-Duct Precipitator Field and Charge Computation Using Finite Element and Characteristics Methods. Journal of Electrostatics, 1983; 14:2:187–199. [3] Javadi H, Farzaneh M, Measuring of Corona Discharge Inception Voltage to Determine Electric Field over the non-homogenous Electrodes in the Air Insulation, 19th International Power System Conference, 2004. [4] Jewell-Larsen N E, Karpov S V, Krichtafovitch I A, Vivi Jayanty, Hsu C P, Mamishev A V. Modeling of Corona-Induced Electrohydrodynamic Flow with COMSOL Multiphysics. Proc. ESA Annual Meeting on Electrostatics, Paper E1, 2008 . [5] Wilson J, Perkins H D, and Thompson W K. An Investigation of Ionic Wind Propulsion. No. NASA/TM-2009-215822. 2009. [6] Colas D F, Ferret A, Pai D Z, Lacoste D A, Laux C O, Ion Wind Generation by a Wire-Cylinder-Plate Corona Discharge in Air at Atmospheric Pressure. Journal of Applied Physics. 2010; 108:10; 1-6. [7] Kachi M, Dascalescu L, Corona Discharge in Asymmetric Electrode Configurations, Journal of Electrostatics, 2014; 72: 6-12. [8] Moreau E, Benard N, Alicalapa F, Douyère A, Electrohydrodynamic Force Produced by a Corona Discharge Between a Wire Active Electrode And Several Cylinder Electrodes. Application to Electric Propulsion. Journal of Electrostatics, 2015; 76:194-200. [9] Wang W, Yang L, Wu K, Lin C, Huo P, Liu S, Huang D, Lin M. Regulation-Controlling of Boundary Layer by Multi-Wire-to-Cylinder Negative Corona Discharge. Applied Thermal Engineering, 2017; 119:438-448. [10] XU H, He Y, Kieran L S, Christopher K G, Sean P K, Cooper C H, Sebastian T, Mark R W, David J P, & Steven R B. Flight of an Aeroplane with Solid-State Propulsion. Nature, 2018; 563. [11] Drew D S, et al. Toward Controlled Flight of the Ionocraft: a Flying Microrobot Using Electrohydrodynamic Thrust with Onboard Sensing and No Moving Parts. IEEE Robotics and Automation Letters 3.4, 2018:2807-2813. [12] Shintaro S, et al. Successively Accelerated Ionic Wind with Integrated Dielectric-Barrier-Discharge Plasma Actuator for Low-Voltage Operation. Scientific reports 9.1, 2019: 1-11. [13] Cogollo M, Balsalobre P, Lantada A, Puage H, Design and Experimental Evaluation of Innovative Wire-to-Plane Fins’ Configuration for Atmosphere Corona-Discharge Cooling Devices, Journal of Applied Science, 2020; 10, 1010: 1-15. [14] Gu L, Tan W, Jiang Z, Chen X, Ren W, Jin Z, Relationship between Corona Discharge Thrust and Applied Voltage’s Polarity, Journal of Energies, 2023; 16 :1-11. ]15[ فتحی ع، مهدی آهنگر م، شبیهسازی عددی رژیم تخلیه کرونا ایجادشده توسط پیکربندی سیم-سیلندر، در شرایط اتمسفری، مجله مهندسی مکانیک مدرس. 1397، د. 18، ش. 2، ص320-323. ]16[ فتحی ع، آهنگر م، مدلسازی جریان پلاسما در یک رانشگر الکتروهیدرودینامیک دو کاتده، فصلنامه علمی-پژوهشی علوم و فناوری فضایی.1398، د. 12، ش. 2، ص. 1-10. ]17[ آقایی ملکآبادی م، خوشخو ر، سلطانی احمدی ح، شبیهسازی عددی رژیم تخلیه کرونا در پیکربندی سیم-سیلندر در شرایط اتمسفریک، مجله دانش و فناوری هوافضا. 1402، د.12، ش. 2، ص 18-36. | ||
|
Statistics Article View: 230 PDF Download: 250 |
||