- [1] S. S. Alzaid and B. S. T. Alkahtani, On study of fractional order epidemic model of COVID-19 under non-singular Mittag-Leffler kernel, Results in Physics, 26 (2021), 104402.
- [2] J. K. K. Asamoah, E. Okyere, E. Yankson, A. A. Opoku, A. A. Konadu, E. Acheampong, and Y. D. Arthur, Non-fractional and fractional mathematical analysis and simulations for Q fever, Chaos, Solitons & Fractals, 156 (2022), 111821.
- [3] M. Aychluh, S. D. Purohit, P. Agarwal, and D. L. Suthar, AtanganaBaleanu derivative-based fractional model of COVID-19 dynamics in Ethiopia, Applied Mathematics in Science and Engineering, 30(1) (2022), 634-659.
- [4] I. A. Baba and B. A. Nasidi, Fractional order epidemic model for the dynamics of novel COVID-19, Alexandria Engineering Journal, 60(1) (2021), 537-548.
- [5] T. A. Biala and A. Q. M. Khaliq, A fractional-order compartmental model for the spread of the COVID-19 pandemic, Communications in Nonlinear Science and Numerical Simulation, 98 (2021), 105764.
- [6] A. Cartocci, G. Cevenini, and P. Barbini, A compartment modeling approach to reconstruct and analyze gender and age-grouped CoViD-19 Italian data for decision-making strategies, Journal of Biomedical Informatics, 118 (2021), 103793.
- [7] I. Cooper, A. Mondal, and C. G. Antonopoulos, A SIR model assumption for the spread of COVID-19 in different communities, Chaos, Solitons & Fractals, 139 (2020), 110057.
- [8] I. Darti, M. Rayungsari, R. R. Musafir and A. Suryanto, A SEIQRD epidemic model to study the dynamics of COVID-19 disease, Communications in Mathematical Biology and Neuroscience, 2023 (2023), 5.
- [9] M. A. Dokuyucu, E. Celik, H. Bulut, and H. M. Baskonus, Cancer treatment model with the Caputo-Fabrizio fractional derivative, The European Physical Journal Plus, 133 (2018), 1-6.
- [10] M. Farman, H. Besbes, K. S. Nisar, and M. Omri, Analysis and dynamical transmission of Covid-19 model by using Caputo-Fabrizio derivative, Alexandria Engineering Journal, 66(1) (2023), 597-606.
- [11] Z. Y. He, A. Abbes, H. Jahanshahi, N. D. Alotaibi and Ye Wang, Fractional-order discrete-time SIR epidemic model with vaccination, Chaos and complexity, 10(2) (2022), 165.
- [12] H. Jafari, R. M. Ganji, N. S. Nkomo, and Y. P. Lv, A numerical study of fractional order population dynamics model, Results in Physics, 27 (2021), 104456.
- [13] A. A. Khan, A. Alam, R. Amin, S. Ullah, W. Sumelka, and M. Altanji, Numerical simulation of a Caputo fractional epidemic model for the novel coronavirus with the impact of environmental transmission, Alexandria Engineering Journal, 61(7) (2022), 5083-5095.
- [14] P. Kumar, V. S. Erturk, V. Govindaraj, M. Inc, H. Abboubakar, and K. S. Nisar ,Dynamics of COVID-19 epidemic via two different fractional derivatives, International Journal of Modeling, Simulation, and Scientific Computing, 14(3) (2023), 2350007.
- [15] S. Kumawat, S. Bhatter, D. L. Suthar, S. D. Purohit, and K. Jangid, Numerical modeling on age-based study of coronavirus transmission, Applied Mathematics in Science and Engineering, 30(1) (2022), 609-634.
- [16] K. Logeswari, C. Ravichandra, and K. S. Nisar, Mathematical model for spreading of COVID19 virus with the MittagLeffler kernel, Numerical Methods for Partial Differential Equations, 40(1) (2024), e22652.
- [17] L. L´opez and X. Rodo, A modified SEIR model to predict the COVID-19 outbreak in Spain and Italy simulating control scenarios and multi-scale epidemics, Results in Physics, 21 (2021), 103746.
- [18] M. Nehme, O. Braillard, G. Alcoba, S. A. Perone, D. Courvoisier, F. Chappuis, I. Guessous, and COVICARE TEAM†, COVID-19 symptoms: longitudinal evolution and persistence in outpatient settings, Annals of Internal Medicine, 174(5) (2021), 723-725.
- [19] K. S. Nisar, M. Farman, M. A. Aty, and J. Cao, Mathematical Epidemiology: A Review of the Singular and NonSingular Kernels and their Applications, Progress in Fractional Differentiation and Applications, 9(4) (2023), 507-544.
- [20] M. M. Ojo, O. J. Peter, E. F. D. Goufo, and K. S. Nisar, A mathematical model for the co-dynamics of COVID-19 and tuberculosis, Mathematics and Computers in Simulation, 207 (2023), 499-520.
- [21] W. Pan, T. Li, and S. Ali ,A fractional order epidemic model for the simulation of outbreaks of Ebola, Advances in Difference Equations, 2021 (2021), 161.
- [22] L. Peng, W. Yang, D. Zhang, C. Zhuge, and L. Hong Epidemic analysis of COVID-19 in China by dynamical modeling, arXiv preprint, 2002 (2020), 06563.
- [23] K. Rajagopal, N. Hasanzadeh, F. Parastesh, I. I. Hamarash, S. Jafari, and I. Hussain, A fractional-order model for the novel coronavirus (COVID-19) outbreak, Nonlinear Dynamics, 101 (2020), 711-718.
- [24] S. Rezapour, H. Mohammadi, and M. E. Samei, SEIR epidemic model for COVID-19 transmission by Caputo derivative of fractional order, Advances in difference equations, 2020 (2020), 490.
- [25] Shyamsunder, S. Bhatter, K. Jangid, A. Abidemi, K. M. Owolabi, and S. D. Purohit, A new fractional mathematical model to study the impact of vaccination on COVID-19 outbreaks, Decision Analytics Journal, 6 (2023), 100156.
- [26] K. Shah, F. Jarad, and T. Abdeljawad, On a nonlinear fractional order model of dengue fever disease under Caputo-Fabrizio derivative, Alexandria Engineering Journal, 59(4) (2020), 2305-2313.
- [27] P. Verma and M. Kumar, Analysis of a novel coronavirus (2019-nCOV) system with variable Caputo-Fabrizio fractional order, Chaos, Solitons & Fractals, 142 (2021), 110451.
- [28] S. W. Yao, M. Farman, A. Akgul, K. S. Nisar, M. Amin, M. U. Saleem, and M. Inc, Simulations and analysis of Covid-19 as a fractional model with different kernels, Fractals, 31(4) (2023), 2340051.
- [29] A. Zeb, E. Alzahrani, V. S. Erturk, and G. Zaman, Mathematical model for coronavirus disease 2019 (COVID-19) containing isolati
|