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Abstract 

In this paper, three popular algorithms, including the Exchange Market Algorithm (EMA), the Shuffled Complex 

Evolution (SCE) algorithm, and the Queen Bee (QB) algorithm, are considered to propose three new hybrid evolutionary 

algorithms named EMA-QB, EMA-SCE, and EMA-SCE-QB. Then, to analyze and validate the effectiveness and 

efficiency of these new algorithms, we compared their performance with the performance of EMA, SCE, and QB 

algorithms on 12 benchmark functions with 10, 20, 30, and 50 variables. It is deduced that hybridization has presented a 

better performance in optimum seeking from both time and accuracy points of view, which become more distinctive as 

the number of variables grows. Finally, the sum of run times, minimum value of cost functions, and the number of 

iterations obtained from the procedure of optimization of all functions using the considered algorithms are illustrated in 

four graphs for each number of variables, which prove the success of the proposed hybrid algorithms. 
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1. Introduction 

Optimization is the process of finding the optimum points 

of a target function. There are two ways to solve 

optimization problems: mathematical methods and meta-

heuristic algorithms. Many constraints or complex target 

functions are so complicated that can’t be solved with 

mathematical methods; on the other hand, metaheuristic 

algorithms have not any problems with constraints or 

complexity of equations because these methods are 

iteration-based and inspired by nature, these methods are 

straightforward and easily implementable. Nowadays, the 

application of meta-heuristic algorithms is common while 

dealing with optimization problems [1]. Their ability to 

find optimal solutions for complex and challenging 

problems in diverse fields and for various objective 

functions has been proven in a variety of articles [2]. The 

meta-heuristic algorithms can be categorized into the 

following five groups [3]: 

1- Bio-simulated algorithms; are based on wild animals' 

life or the biological behavior of live creatures like grey 

wolf optimizer [4], artificial immune system [5], and 

dendritic cell algorithm [6]. 

2- Nature-inspired algorithms like the flower pollination 

algorithm [7], the bat algorithm [8], etc. inspired by 

natural systems [9].  

3- Physics-based algorithms are inspired by natural rules 

of physics. For example, the gravitational search 

algorithm [10] is a physics-based meta-heuristic 

algorithm. 

4- Evolutionary algorithms: these algorithms are based on 

the evolution of natural generations. Genetic algorithm 

[11] and the queen bee [12] are well-known examples of 

this category. 

5- Swarm-based algorithms: these algorithms are based 

on the colony behavior of animals or insects in nature that 

are searching for optimum points together, and everyone 

wants to be nearer the swarms, which are in better 

positions. Particle swarm optimization [13], ant colony 

optimization [14] [15], and artificial bee colony algorithm 

(ABC) are good examples of this category.  

The shuffled Complex Evolution Algorithm [16] and the 

exchange market algorithm [17], which we will discuss in 

this paper, are swarm-based evolutionary algorithms. In 

other words, they belong to the fourth and fifth groups. 

Hybridizing these algorithms with each other or other 

methods presents better solutions for more complicated 

problems and increases accuracy, effectiveness, and 

efficiency [18]. Hybridization improves global and local 

search techniques and lessens the possibility of trapping 

into the local optimum in most algorithms [19, 2]. Among 

hybrid algorithms and their applications in the literature, 

the following articles can be mentioned: hybridization of 

GA and competitive swarm optimizer [20], hybridization 

of grey wolf optimizer and differential evolution [21], 
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hybridized PSO, QB, and GA algorithms with Nelder-

Mead (NM) algorithm for PID controller design for a 

Gryphon robot [22], hybrid honeybee mating 

optimization algorithm with multi-objective optimization 

used in searching for common patterns on protein 

sequences [23], an artificial bee colony based hybrid 

approach for waste collection problem [3], an adaptive 

swing-up sliding mode controller design for a natural 

inverted pendulum system based on the hybrid culture-

bees algorithm [24], hybrid genetic algorithm for 

profitable heterogeneous vehicle routing problem with 

cross-docking [25], hybrid algorithm based on enhanced 

grey wolf optimization and algorithm of dragonfly for 

handling optimal power flow issue [26], a hybrid ant 

colony optimization algorithm for multi-objective vehicle 

routing problem with flexible time windows [27], 

hybridization of bee algorithm, teaching-learning-based 

optimization algorithm and non-dominated sorting 

genetic algorithm (NSGA-II) for an imperfect production 

system in order to increase its product quality under two 

warranty policies [19], hybrid multi-objective artificial 

bee colony for multiple sequence alignment [28]. They 

also have been used in multi-label classification [20], 

[29]; just to call a few. 

In this paper, we propose three hybrid algorithms based 

on EMA and two other algorithms, the SCE and QB, 

including hybridized EMA with QB algorithm; EMA-QB, 

hybridized EMA with SCE method; EMA-SCE, and 

hybridization of all three algorithms, EMA-SCE-QB. To 

show the acquired benefits of hybridization, these 

algorithms are applied to optimize 12 benchmark 

functions with various dimensions of 10, 20, 30, and 50 

and the obtained results are compared with the results of 

EMA, SCE, and QB algorithms.   

The rest of the paper is organized as follows. Section 2 

reviews the EMA algorithm.  Section 3 and 4 reviews the 

QB, and the SCE methods, respectively. In Section 5, we 

propose our hybridized algorithms: EMA-QB, EMA-SCE, 

and EMA-SCE-QB. In Section 6, the benchmark 

functions are introduced. Simulation results are presented 

and discussed in section 7. Section 8 concludes the paper. 

 

2. Exchange Market Algorithm (EMA) 

The exchange market algorithm (EMA), proposed by 

Gorbani and Babaei [17], is formed based on a flash of 

inspiration from shareholders’ performance in the stock 

market during the procedure of trading the shares. This 

novel optimization method is appropriate for both 

continuous and discrete [30] optimization problems and , 

compared with other metaheuristics, has exhibited superb 

capability of finding the global optimal point, more 

robustness and efficiency and even fewer limitations like 

trapping into local optimum points, early convergence, 

disability in finding adjacent points of the optimal point, 

converging to different solutions in each implementation 

of the program. Furthermore, this algorithm was utilized 

in economic emission dispatch and reliability in thermal 

power plant [31] to reduce fuel and emission costs of the 

system and raise the dependability. 

This algorithm, simulates the competitive behavior of 

shareholders in buying and selling their shares in the 

virtual stock market in order to elevate their ranking up to 

the list of successful shareholders.  In this algorithm two 

general states are considered: the normal state and the 

oscillation state. First, the shareholders’ population is 

divided into three groups according to their share amount. 

The first group, which usually forms 10-30 percent of the 

total population, is shareholders with the highest rank, 

while the second group includes 20-50 percent of middle-

ranked exchange market dealers, and the rest of the 

members with the lowest shares are classified in the third 

group. People in the first group don’t trade their shares in 

both states. People in the second group, in the normal state, 

try to search around the optimum point using the 

differences in the amounts of the shares of the first 

group’s members. In the oscillation state, they try to find 

solutions with minimum cost value with the help of 

buying and selling their shares in such a way that their 

total share amount remains constant. People in the third 

group, take more risk than those in the second group, and 

in the normal state, they use the differences in shares 

between their individuals and the first group’s individuals 

and the differences in shares of the first group’s members. 

In the oscillation state, they try to find solutions with 

minimum cost value by changing their total share amount. 

The following steps summarize the EMA algorithm. 

step 1. Initialize the population of shareholders and 

evaluate them. Do the following steps for 𝑘 =

1, ⋯ , 𝑖𝑡𝑒𝑟𝑚𝑎𝑥. 

step 2. Sort the population according to their costs. 

step 3. Divide the sorted population into three groups 

according to their rank. 

step 4. Perform the normal state. 

a) For 𝑗th member of the second group, 
(2)group

jpop , 

change the shares by 

(2) (1) (1)

1; 2;(1 )group group group

j i ipop r pop r pop=  + −               (1)                                              

where
(1)

1;

group

ipop  and 
(1)

2;

group

ipop  are two 

randomly selected members of the first group, r  

is a random value (0 1)r  , 𝑗=1,2,…,𝑛𝑗 , and 

𝑛𝑗 is the number the second group  members. 

b) For 𝑘th member of the third group, 
( )3group

kpop , 

do: 

i. Define the share variations ks  by 

( ) ( )( )
( ) ( )( )

1 3

1 1;

1 3

1 2;2  

2
group group

i k

group group

i

k

k

r pops pop

r pop pop

  +

 −

= −


                               (2)                                         

where 1r  is a random value 1(0 1)r  . 

ii. Replace 
( )3group

kpop  with the new member 

( )3 , group new

kpop  according to 

( ) ( )3 ,  3
0.8

group new group

k k kpop pop s= +                                          (3)   
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step 5. Perform the oscillation state 

a) Do the following steps for all members of the 

second group 

i. Determine the amount of shares 1( )tn  that 

should be randomly added to some shares by 

( )1 1 12 .t tn n r   = − +                                       (4)                                                            

𝑛𝑡1  is total share of 𝑡 th member before 

applying the share changes,   is the 

information of the exchange market, r is a 

random value (0 1)r  , and  is the ratio of 

the number of 𝑡th member to the number of the 

last member of the population. 1  is the risk 

level of each member in the second group and 

can be determined as follows: 

1 1 1tn g =                                                                              (5) 

1, 1,

1 1,

max mink

max

max

g g
g g k

iter

−
= −                                          (6)                            

where k  is the current iteration number, and 

1,maxg  and 1,ming  are the maximum and 

minimum risk values, respectively. 

ii.  Determine the amount of shares  ( 2tn ) that 

should be sold by 

2 2t tn n  = −                                                                             (7) 

where 2tn  is the share amount of 𝑡th member 

after applying the step 5-a-i. 
b) Do the following steps for all members of the 

third group. 

i. Determine the amount of shareshat t 3( )tn   

should be randomly added to the share of each 

member by 

3 24t sn r   =                                                           (8)                      

where sr is a random value )( 0.5 0.5sr −  , 2  

is the risk level of each member in the third 

group and can be determined by  

2 1 2tn g =                                                                              (9) 

, and 2g  is obtained in the same way as 1g . 

Remark1: In this algorithm, indeed, in normal mode, the 

crossover phase and in the oscillation mode, the mutation 

phase is performed for the second and the third group. 

 

3. The Queen Bee Algorithm 
The mating process of honeybees and their intelligent 

behavior while searching for food supplies have been a 

source of inspiration to come up with one of the 

evolutionary algorithms called bee algorithm, which first 

introduced in 1997 by Sato and Hagiwara. Since then, 

many modifications have been made to expand its 

applications in different optimization problems such as 

traveling salesman scheduling and constraint problems, 

the quadratic assignment problem (QAP) [32], distributed 

consensus tracking of unknown nonlinear chaotic delayed 

fractional-order multi-agent systems [33], and converter 

designing in power electronics [34].  This algorithm is 

studied in three various fields: the queen bee (QB), the 

artificial bee colony, and the fast marriage in honey bee 

optimization (FMBO), and it’s modified version, i.e., the 

modified fast marriage in honey bee optimization 

(MFMBO) [35]. The QB algorithm, presented by Jung in 

2003, is a collective search algorithm and has similarities 

with the genetic algorithms. It has been applied in various 

fields, including multivariable problems, neural networks 

training and feed-forward neural networks, and 

navigation.  

In this algorithm, the population is arranged in ascending 

order of cost function and the queen, as one of the parents, 

is the best member of the group. Indeed, in the crossover 

step, unlike the genetic algorithm, one of the parents is 

always the queen. Then, the mutation phase with two 

unlike mutation rates is implemented in such a way that 

the normal mutation rate with the probability mp  is 

applied to better members of the population ( %) , and 

the strong mutation rate with �̇�𝑚 probability ( )m mp p is 

used to other members ((1 %))−  to avoid early 

convergence [36]. 

 

4. The Shuffled Complex Evolution Algorithm 

Initially proposed by Duan et al. in 1992, the shuffled 

complex evolution (SCE) algorithm is derived from 

sharing information in natural biological evolution [37]. 

Since then, this global search methodology has been 

modified and applied to solve various optimization 

problems [38, 39]. SCE is a swarm-based evolutionary 

algorithm. Like other swarm-based algorithms, in this 

algorithm, initial population is evaluated in every iteration. 

They are ranked based on the objective function of each 

individual, but the point is in the complexes. Clustering 

the individuals into complexes causes to search be more 

efficient because in the first complex, the responses are 

better, and the offspring from them, can find optimum 

points better than these points; on the other hand, by this 

method, the random search ability is not missed, so SCE 

prevent getting stuck into local optimum points. The steps 

of optimizing a cost function (𝑓) by the SCE algorithm are 

as follows: 

step 1. Considering popN   random points in the 

search space. 

step 2. Calculation of the cost function for each 

member and putting them in ascending order. 

step 3. Dividing the population into p  

complexes. 

step 4. Evolving each complex: 

a) Choose q random points with larger 

probabilities and smaller cost values from 

each complex to form a sub-complex. 

b) Omit the worst point ( )wx  in each sub-

complex, calculate the average of other 

points ( )x , and reflect wx  with respect to �̅� 

by 2r wx x x= − . 
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c) If r wf f , replace wx  by rx  and go to step e, 

else calculate contraction point by 

( ) / 2cx x+ . 

d) If c wf f , replace wx by cx , else go to step 

e. 

e) Generate a random point in the search space 

and replace 𝑥𝑤 with it. 

f) Repeat steps b to g, r times (   1  )r . 

g) Repeat steps a to g, s times (   1  )s . 

step 5. Check the stopping conditions, if not 

fulfilled go to step 4. 

5. Hybridizing algorithms 

As we mentioned before, metaheuristic algorithms are 

growing by researchers, and one crucial way to grow and 

make their performance better, is hybridizing them [40]. 
Already, there are many hybrid algorithms like GA-PSO 

[41], GA-ACO [42], and SFLA-CSO[43] that make the 

speed and accuracy of optimization better in comparison 

with the old algorithms.  

In summary, the advantages of hybridization on the 

subject of biology and genetics can be enlisted as: 

I. Hybrids can combine desirable features from 

parent specious, so that the overall performance 

can improve. 

II. Hybridization can reduce the adverse effects of 

inbreeding, leading to genetic diversity and 

healthier populations. 

III. Combining different genetic algorithm variants 

can balance exploration and exploitation; as a 

result, it leads to more effective optimization. 

IV. Hybridization helps avoid the problem of early 

convergence, where genetic algorithms end up 

with suboptimal solutions. 

V. Integrating heuristic optimization methods 

alongside genetic algorithms enhances the global 

search ability. 

VI. Combining algorithms with complementary 

strengths can speed up the convergence. 

In this paper, we hybridize the EMA algorithm with the 

QB, and SCE and introduce EMA-QB and EMA-SCE. In 

addition, we hybridize the EMA with both the QB and the 

SCE and introduce the EMA-SCE-QB algorithm. The 

way that we hybridize algorithms is essential for 

improving convergence speed, and accuracy. The results 

prove the superiority of these hybridized algorithms 

compared to their basic algorithm in terms of accuracy, 

consistency, and convergence speed. 

 

5.1. Hybrid EMA-QB Algorithm 

To enhance the features of the exchange market algorithm 

in function optimization, it is hybridized with the queen 

bee algorithm. As we know, a modification is made within 

the queen bee algorithm with the goal of improving the 

genetic algorithm, where the crossover step involves the 

random selection of one parent. In contrast, the “queen”, 

symbolizing the best member, is held constant throughout 

the algorithm.  

As mentioned in Remark 1, the exchange market 

algorithm in normal mode has a crossover performance on 

the members of the second and third groups. Therefore, 

two members of the first group are randomly selected. 

This motivated us to hybridize the EMA and the QB 

algorithm. In this new algorithm, only one of these two 

members is chosen randomly, and the second one is the 

first member of the first group, which has the lowest cost 

as a queen in the QB algorithm. To avoid early 

convergence, a more significant mutation rate is 

considered in the QB algorithm. As mentioned in 

Remark1, the EMA performs mutation on the members of 

the second and third groups in the oscillation mode. 

According to step 5-a-i, the mutation rate in the second 

group is small, but according to step 5-b-i, the mutation 

rate in the third group is big enough to avoid premature 

convergence. Therefore, the hybridization should be done 

just for the third group. We hybridized the bee algorithm 

and the EMA for both the second, and the third group and 

the results confirmed this point. Hence, we eliminated the 

results for the hybridization of the second group. 

Consequently, in the EMA-QB algorithm the formula in 

step 4-b-i changes to 
( )( )

( ) ( )( )

3

1

1 3

1 2;

2

2

groupQB

k k

group group

i k

s r pop pop

r pop pop

=   − +

  −
                        (10)                                                                           

 

Where 
QBpop  is the first member of the first group 

( )1

1;1 )(
groupQBpop pop= . The flowchart of the EMA-QB is 

Fig. 1. 

 
5.2. Hybrid EMA-SCE Algorithm 

To improve the features of the EMA algorithm, it can also 

be hybridized with the SCE algorithm. As we see in 

Section 4, grouping individuals into complexes enhances 

the efficiency of the search process. This is due to the fact 

that the first complex tends to yield superior responses, 

and offspring generated from this complex have a better 

chance of finding optimal points compared to others. 

Conversely, within the EMA framework, the initial group 

comprises the top-performing individuals, eliminating the 

necessity to apply to the SCE algorithm to improve this 

group.  To this end, one choice is to change the 

distribution of the shareholders’ populations like the SCE 

algorithm. After sorting the population of shareholders 

according to their share amount, 10-30 percent of top 

shareholders are selected for the first group, just like the 

EMA algorithm. The hybridization  with the SCE 

algorithm is performed for the second and third group. For 

the rest of the members, distribution of shareholders is 

like distribution of members in the SCE algorithm.  The 

first member will be placed in the second group, the 

second member will be placed in the third group, and the 

third one will be placed in the second group; this routine 

continues until all members  are placed in the second and 

the third group. By this method, the distribution of the 

members will be uniform. This kind of distribution is 

performed for the second and the third group in both 

normal and oscillation states. It is also possible that the 

number of the members in these two groups is not the 

same; as long as they are distributed in the described 

manner, it can be called the EMA-SCE algorithm. The 

flowchart of the EMA-SCE is depicted in Fig. 2. 
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Start

End

Initialize the values and the population of shareholders.

Calculate the cost for all members and sort the population according to 
their cost.

Save the best member as a queen.

Divide the population into three groups according to the EMA algorithm.

Change the share of the third group in normal state by equation (3) 
according to the defined Sk in equation (10) by the QB algorithm.

Change the share of the second group in normal state according to the 
EMA algorithm by equation (1).

Calculate the cost for all members and sort the population according to 
their cost.

Divide the population into three groups according to the EMA algorithm.

Perform the oscillation state for the second and the third group 
according to the EMA algorithm.

Are the ending 
conditions satisfied?

yes

No

 

Fig. 1.  The flowchart of EMA-QB algorithm 

 
5.3. Hybrid EMA-SCE-QB Algorithm 

To improve the crossover in the EMA-SCE algorithm, it 

can be hybridized again with the QB algorithm. This 

means that in the third group of the EMA-SCE, the 

crossover is performed similarly way with the QB 

algorithm, i.e., crossover with one fixed parent, which is 

the queen bee. However, in the second group, the 

crossover is performed like EMA and EMA-SCE 

algorithms. Therefore, the obtained algorithm has two 

main differences from the EMA algorithm. First, the 

population distribution in the second and in third groups 

is similar to the SCE algorithm in both the normal state 

and oscillation state. Second, the crossover in the third 

group is like the QB algorithm. The flowchart of the 

EMA-SCE-QB is illustrated in Fig. 3. 

Comparing the speed of different evolutionary algorithms 

in finding the optimum point of a function can be done 

through empirical experiments and performance metrics. 

Here’s a general approach [44]. 

 

I. Select a set of benchmark functions that are 

commonly used for testing optimization 

algorithms. 

II. Ensure the selected algorithms have the same 

parameters and configuration or similar settings 

to make the comparison fair. 

III. Define performance metrics to evaluate the 

algorithms. Typical metrics include 

convergence speed, solution quality, and 

robustness. 

IV. Run each algorithm on the selected benchmark 

function, collecting data on how they perform. 

Multiple runs can be conducted to account for 

randomness. 

 

Start

End

Initialize the values and the population of shareholders.

Calculate the cost for all members and sort the population according to 
their cost.

Choose %10-%30 of the best members for the first group.

Divide the rest of the members into two groups according to the SCE 
algorithm and create the second and third group.

Calculate the cost for all members and sort the population according to 
their cost.

Change the share of the second group and third group in normal state 
according to the EMA algorithm by equation (1)-(3).

Choose %10-%30 of the best members for the first group.

Divide the rest of the members into two groups according to the SCE 
algorithm and create the second and third group.

Perform the oscillation state for the second and the third group 
according to the EMA algorithm.

Are the ending 
conditions satisfied?

yes

No

 

Fig. 2.  The flowchart of EMA-SCE algorithm 

Comparing the complexity of different evolutionary 

algorithms for function optimization involves assessing 

various aspects of the algorithms, such as population size, 

number of generations, and parameter sensitivity. Also, 

there is a trade-off between solution quality and 

computational time that should be considered [45].  

 

6. The Benchmark Functions 

The functions of Table I. are employed to perform 

simulations and test the proposed methods. The optimal 

function value in all the functions is zero. All the applied 

functions are high dimensional. About the number of local 

minimums or modalities, Ackley, Griewank, Penalized 

functions 1 and 2 and Rastrigin functions are multimodal. 

However, Quartic, Rosenbrock, and Schwefel’s functions 
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1.2, 2.21, and 2.22, Sphere and Step functions are 

unimodal. On the other hand, about separability, Ackley, 

Griewank, Penalized functions 1 and 2, Rosenbrock, 

Schwefel’s function 1.2, 2.21, and 2.22 are non-separable 

which are consequently difficult to optimize, but Quartic, 

Rastrigin, Sphere, and Step functions are separable and 

optimization of these functions becomes problematic if 

they are multimodal.  

Each function has a particular property that makes its 

optimization difficult. For instance, the Ackley function 

has an exponential term that covers its surface with 

numerous local minimums. To obtain good results for this 

function, the searching strategy must combine the 

components of exploring and exploiting efficiently. The 

Griewank function has a product term that introduces 

interdependence among the variables. Therefore, the 

techniques that optimize each variable independently 

experience a failure. As in the Ackley function, the optima 

of the Griewangk function are regularly distributed. The 

contour in the Rastrigin function has a great deal of local 

minimums that are regularly distributed, and their value 

increases with the distance to the global minimum. A 

significant problem with this function is the fact that an 

optimization algorithm could easily trap in a local 

minimum. 

 

7. Numerical Results 

The performance of proposed algorithms, including 

EMA-SCE, EMA-QB, and EMA-QB-SCE, is evaluated 

by implementing them on the benchmark functions 

mentioned in the previous section. For comparison, the 

results of EMA, SCE and QB algorithms are considered 

as well. Execution time and minimum of cost functions 

while implementing the mentioned algorithms for 10, 20, 

30 , and 50  variables are illustrated in Tables I-IX, 

respectively.  

According to the results in Tables II-V, overall, the speed 

of hybrid algorithms is the highest in the optimization of 

the most functions, especially, when the number of 

variables rises; they present better results in almost all the 

functions. The difference in run time between hybrid 

algorithms, the QB, and the SCE algorithms, having the 

most amount of run time, is considerably significant 

except for a small number of functions and specific 

number of variables. However, the hybridization of EMA 

with these algorithms has resulted in far less run time in 

EMA-SCE-QB, EMA-QB, and EMA-SCE algorithms 

than QB and SCE algorithms, resulting in an 

improvement from the run time point of view. Minimums 

of cost functions after employing each algorithm are 

depicted in Tables V-IX.  

First of all, it is crystal clear that, generally, an algorithm 

may be successful in the optimization of one function and 

unsuccessful in finding the optimum point for another 

function. However, the obtained results illustrate that the 

number of accomplishments of hybrid algorithms in 

reaching the global optimum point with the least error is 

much more than other algorithms.  

According to Table II, the execution time of optimization 

of functions with 10 variables is the least when the process 

is performed by hybrid algorithms, including EMA-QB, 

for most of the functions such as 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓9, 𝑓10, and 

𝑓11, and EMA-QB-SCE for 𝑓7. EMA- QB is the second 

fast algorithm for 𝑓1  and 𝑓12  with, respectively, 7.7𝑚𝑠 

and 3.7𝑚𝑠 differences with EMA, and for 𝑓8 being 54𝑚𝑠 

later than SCE. In 𝑓6 , EMA-SCE is the second fastest 

algorithm, being 14𝑚𝑠 slower than EMA. However, QB 

and SCE (except for 𝑓8) are the slowest algorithms, with 

an average run time of 10.22𝑠 and 5.35𝑠. 

For 20 variables, the proposed algorithms are the most 

appropriate algorithms from run time point of view, 

including EMA-SCE-QB for 𝑓1, and 𝑓4, EMA-SCE for 𝑓2, 

𝑓7 , and 𝑓10 , and EMA-QB for 𝑓5 , 𝑓8 , 𝑓9 , and 𝑓11 , 

concerning Table 3.  

Although EMA had the least run time for the remaining 

functions, hybrid algorithms EMA-QB for 𝑓3 and EMA-

SCE for 𝑓6  and 𝑓12  are only 0.1𝑚𝑠 , 54𝑚𝑠 , and 1.6𝑚𝑠 

slower. The QB and SCE algorithms are the slowest with 

minimum 0.43𝑠  and 0.203𝑠  and maximum 31.57𝑠  and 

46.45𝑠 run time. 

In state of 30 variables, as illustrated in Table 4, hybrid 

algorithms performed more desirably. They consumed 

less time in comparison to other algorithms in a way that 

EMA-SCE in case of 𝑓1 , 𝑓2 , 𝑓6 , 𝑓7 , 𝑓10 ,  𝑓11 , and 𝑓12 , 

EMA-QB in case of 𝑓3, 𝑓5, and 𝑓9, and EMA-SCE-QB in 

case of 𝑓4  and 𝑓8  optimized fast while the average run 

time of EMA, QB, and SCE is 0.95, 15.95, and 36.96 

seconds, respectively.  

Table V depicts that, for the dimension of 50, the 

functions 𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓10, and 𝑓12 are optimized at the 

shortest run time by EMA-SCE, when for 𝑓5, 𝑓7, and 𝑓9 it 

is EMA-QB and for 𝑓8 it is EMA-SCE-QB. On the other 

hand, EMA, QB, and SCE are carried out at 3.41, 37.79, 

and 18.39 seconds, respectively. 

For the data illustrated in Tables VI-IX, the accuracy of 

algorithms in optimizing each function is investigated 

separately to know which algorithm optimizes a function 

with more precision.  

As mentioned previously, the Ackley function (𝑓1)  is 

challenging to optimize due to its multimodality and 

abundance of local optimum points. Nevertheless, EMA-

SCE for 50 variables and EMA-SCE-QB for 20 and 30 

variables performed better than other algorithms with the 

least average error. 

While evaluating the Griewank function (𝑓2), from the 

perspective of least error, hybrid algorithms have 

expressed their superiority as the number of variables 

increases. For example, the disparity between the 

minimums of cost functions optimized by EMA and 

hybrid algorithms increases to an ignorable amount when 

comparing EMA with EMA-SCE-QB for 𝐷 = 20 and to 

0.3𝐸 − 6 when comparing to EMA-SCE for D=50. This 

is while the errors of the QB and the SCE algorithms are 

equal to 2.7𝐸 − 4 and 4.305.  

In optimizing Penalized function 2 (𝑓4), the EMA-QB 

algorithm has carried out optimization more precisely for 

dimensions 20, 30, and 50 with an average error equal to 

6.97𝐸 − 6  and for dimensions 10, EMA-SCE-QB 

performed with less error than other algorithms except the 

SCE algorithm where there is 0.4𝐸 − 6  difference 

between their values. 

While dealing with the optimization of the Quartic 

function (𝑓5), the SCE algorithm for 10 variables and the 

QB algorithm for the other dimensions have optimized 

this function better. 
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Table I: benchmark functions 

 

 

Table II. run time for 10 variables 

 

 

Start

End

Initialize the values and the population of shareholders.

Calculate the cost for all members and sort the population according to 
their cost.

Choose %10-%30 of the best members for the first group.

Divide the rest of the members into two groups according to the SCE 
algorithm and create the second and third group.

Change the share of the third group in normal state by equation (3) 
according to the defined  in equation (11) by the QB algorithm.

Change the share of the second group in normal state according to the 
EMA algorithm by equation (1).

Calculate the cost for all members and sort the population according to 
their cost.

Choose %10-%30 of the best members for the first group.

Divide the rest of the members into two groups according to the SCE 
algorithm and create the second and third group.

Perform the oscillation state for the second and the third group 
according to the EMA algorithm.

Are the ending 
conditions satisfied?

yes

No

 

Fig. 3.  The flowchart of EMA-SCE-QB algorithm 

 

However, with less difference, hybrid algorithms are 

ranked after them. Considering the average error of all 

algorithms in the case of the Rastrigin function (𝑓6) , 

EMA-SCE has the slightest average error, and for 50 

variables, EMA-SCE-QB expresses better performance. 

The Raosenbrock function (𝑓7)  and the Schwefel’s 

function 2.21 (𝑓9)  are optimized best by hybrid 

algorithms for all dimensions. In the case of 𝑓7 , EMA-

SCE-QB is the most accurate algorithm for 𝐷 = 10 and 

20 with the error of 9.48𝐸 − 6  and 9.18𝐸 − 6  , and 

EMA-SCE has the slightest error of 9.53𝐸 − 6 and 2.26 

for 𝐷 = 30 and 50; meanwhile, other hybrid algorithms 

like EMA-SCE-QB with the difference of 0.12𝐸 − 6 for 

𝐷 = 30 and 0.3 for 𝐷 = 50, have relatively close results 

to the mentioned algorithms. The QB and SCE algorithms 

indicate the weakest strength in this process.  

The error of EMA is 8.87𝐸 − 6 for = 10 , rising to 6.05 

for 𝐷 = 50. In the case of  𝑓9, EMA-QB has an average 

error of 9.72𝐸 − 6 while it is 9.75𝐸 − 6 for EMA and 

0.58 and 3.6 for the QB and SCE algorithms. The error of 

Function Formulation Range 

1.Ackley 
 

𝑓1(𝑥)

= −20 exp ( √
1

𝑛
∑ 𝑥𝑖

2

𝑛

𝑖=1

−0.2

)

− exp (
1

𝑛
∑ cos(2𝜋𝑥𝑖)

𝑛

𝑖=1

) + 20 + 𝑒 

[−32,32] 

2.Griewank 

𝑓2(𝑥) =
1

4000
∑ 𝑥𝑖

2

𝑛

𝑖=1

− ∏ cos (
𝑥𝑖

√𝑖
)

𝑛

𝑖=1

+ 1 
[−600,600] 

3.Penalized 
function 1 
 

𝑓3(𝑥) =
𝜋

𝑛
{10𝑠𝑖𝑛2(𝜋𝑦1) + ∑(𝑦𝑖 − 1)2[1

𝑛−1

𝑖=1

+ 10 𝑠𝑖𝑛2(𝜋𝑦𝑖+1)]

+ (𝑦𝑛 − 1)2} + 

∑ 𝑢(𝑥𝑖 , 10,100,4)

𝑛

𝑖=1

  𝑦𝑖

= 1 +
𝑥𝑖 + 1

4⁄   𝑢(𝑥𝑖 , 𝑎, 𝑘, 𝑚)

= {

𝑘(𝑥𝑖 − 𝑎)𝑚𝑥𝑖 > 𝑎
0 − 𝑎 < 𝑥𝑖 < 𝑎

𝑘(−𝑥𝑖 − 𝑎)𝑚𝑥𝑖 < −𝑎  
 

[−50,50] 

4.Penalized 
function 2 
 

𝑓4(𝑥)

= 0.1 {𝑠𝑖𝑛2(3𝜋𝑥1)

+ ∑
(𝑥𝑖 − 1)2[1 +  𝑠𝑖𝑛2(3𝜋𝑥𝑖+1)] +

(𝑥𝑛 − 1)2[1 +  𝑠𝑖𝑛2(2𝜋𝑥𝑛)]

𝑛−1

𝑖=1

}

+ ∑ 𝑢(𝑥𝑖, 5,100,4)

𝑛

𝑖=1

 

[−50,50] 

5.Quartic 

𝑓5(𝑥) = ∑ 𝑖𝑥𝑖
4 + 𝑟𝑎𝑛𝑑𝑜𝑚[0,1)

𝑛

𝑖=1

 
[−1.28,1.28] 

6.Rastrigin 

𝑓6(𝑥) = ∑[𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖) + 10]

𝑛

𝑖=1

 
[−5.12,5.12] 

7.Raosenbro
ck 𝑓7(𝑥) =  ∑[100(𝑥𝑖+1 − 𝑥𝑖

2)
2

+ (𝑥𝑖 − 1)2]

𝑛−1

𝑖=1

 

[−30,30] 

8.Schwefel’s 
function 1.2 
 

𝑓8(𝑥) = ∑(∑ 𝑥𝑗

𝑖

𝑗=1

)2

𝑛

𝑖=1

 

[−100,100] 

9.Schwefel’s 
function 
2.21 

𝑓9(𝑥) = 𝑚𝑎𝑥𝑖{|𝑥𝑖|, 1 ≤ 𝑖 ≤ 𝑛} [−100,100] 

10.Schwefel’
s function 
2.22 
 

𝑓10(𝑥) = ∑|𝑥𝑖|

𝑛

𝑖=1

+ ∏|𝑥𝑖|

𝑛

𝑖=1

 
[−10,10] 

11.Sphere 

𝑓11(𝑥) = ∑ 𝑥𝑖
2

𝑛

𝑖=1

 
[−100,100] 

12.Step 

𝑓12(𝑥) = ∑(⌊𝑥𝑖 + 0.5⌋)2

𝑛

𝑖=1

 
[−200,200] 

 EMA SCE QB EMA-QB 
EMA-

SCE 

EMA-

SCE-QB 

f1 0.043 0.225 17.009 0.051 0.054 0.056 

f2 0.038 0.120 5.529 0.038 0.038 0.039 

f3 0.031 0.083 0.276 0.029 0.033 0.032 

f4 0.046 0.161 9.521 0.045 0.049 0.047 

f5 0.034 0.114 0.135 0.030 0.037 0.033 

f6 0.142 0.238 17.52 0.165 0.156 0.232 

f7 0.302 35.39 15.27 0.287 0.199 0.193 

f8 0.404 0.212 24.52 0.266 0.437 0.281 

f9 0.074 22.16 16.92 0.066 0.084 0.074 

f10 0.042 0.254 17.041 0.041 0.042 0.042 

f11 0.033 0.145 16.048 0.031 0.034 0.034 

f12 0.026 0.076 0.420 0.030 0.042 0.040 
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EMA is close to the error of EMA-QB, and it is equal to 

the error of other hybrid algorithms, but the difference in 

errors of the QB and the SCE algorithms is considerable. 

In the case of  Schwefel’s function 1.2 (𝑓8), although SCE 

is more effective in optimizing the function with 10 

variables, when the number of variables goes up, hybrid 

algorithms indicate better performance. For instance, for 

the dimension of 50, EMA-QB, EMA-SCE-QB, and 

EMA-SCE have, respectively, the errors of 9.93𝐸 − 6, 

9.94𝐸 − 6 , and 9.96𝐸 − 6  while the SCE algorithm 

results in the error of 976.96. 

Schwefel’s function 2.22 (𝑓10)  is better optimized by 

EMA-QB for 𝐷 = 10  and 20, EMA-SCE for 𝐷 = 30 , 

and EMA for 𝐷 = 50. Considering the average error of 

these algorithms, which are equal to 9.30𝐸 − 6, 9.38𝐸 −
6, and 9.83𝐸 − 6, it is inferred that, in totally, hybrid 

algorithms had better performance than EMA. 

Table III. run time for 20 variables 

 

Table IV. run time for 30 variables 

 

Table V. run time for 50 variables 

 
Table VI.  minimum of cost function for 10 variables 

 

Table VII.  minimum of cost function for 20   variables 

 

Hybrid algorithms express their strong ability in 

optimization of the Sphere function (𝑓11)  compared to 

other algorithms, especially, when the number of 

variables is equal to 30. In this situation, EMA–QB ends 

in a result equal to 9.27𝐸 − 6 while the result of EMA is 

9.39𝐸 − 6 the QB and SCE algorithms have significantly 

large amounts of 0.0056 and 22.63 in comparison. 

The Step function (𝑓12) is optimized without any error by 

all the algorithms for all numbers of variables. However, 

by growth of dimension, the QB algorithm and, especially, 

the SCE algorithm show weakness in optimization of this 

function such that for 𝐷 = 30 and 50, the error of the SCE 

algorithm is 48 and 631.4, respectively, and the error of 

the QB algorithm for 𝐷 = 50 is 0. 

 EMA SCE QB EMA-QB 
EMA-

SCE 

EMA-

SCE-QB 

f1 0.112 37.158 17.215 0.118 0.110 0.109 

f2 0.07 37.886 16.216 0.076 0.067 0.069 

f3 0.064 14.722 2.495 0.064 0.066 0.068 

f4 0.138 37.132 17.133 0.152 0.138 0.137 

f5 0.084 0.203 0.430 0.077 0.087 0.079 

f6 0.335 37.428 18.091 0.405 0.389 0.425 

f7 1.301 37.019 16.999 1.183 0.775 0.839 

f8 2.181 45.63 31.578 1.467 2.288 1.468 

f9 0.227 43.067 17.091 0.201 0.243 0.242 

f10 0.087 38.976 17.188 0.083 0.077 0.077 

f11 0.059 37.048 16.930 0.058 0.060 0.060 

f12 0.061 46.455 3.227 0.066 0.062 0.063 

 EMA SCE QB EMA-QB 
EMA

-SCE 

EMA-

SCE-QB 

f1 0.190 37.306 17.335 0.199 0.187 0.193 

f2 0.123 38.468 19.168 0.128 0.106 0.109 

f3 0.111 38.460 4.556 0.108 0.115 0.114 

f4 0.338 37.264 17.593 0.391 0.297 0.294 

f5 0.176 0.373 1.539 0.150 0.183 0.152 

f6 0.686 37.487 18.254 0.743 0.681 0.699 

f7 2.578 37.036 17.312 2.640 1.807 1.838 

f8 6.418 49.796 38.519 4.461 6.708 4.293 

f9 0.491 43.740 17.283 0.444 0.515 0.514 

f10 0.145 38.390 17.342 0.146 0.117 0.127 

f11 0.093 37.101 17.336 0.095 0.089 0.093 

f12 0.105 48.160 5.299 0.091 0.086 0.092 

 EMA SCE QB EMA-QB 
EMA-

SCE 

EMA-

SCE-QB 

f1 0.468 37.792 17.541 0.508 0.456 0.468 

f2 0.272 38.602 19.646 0.284 0.211 0.217 

f3 0.222 38.636 8.941 0.223 0.219 0.221 

f4 1.124 37.483 18.020 1.231 0.764 0.815 

f5 0.497 0.870 4.273 0.405 0.512 0.408 

f6 1.399 37.524 18.431 1.526 1.470 1.627 

f7 4.239 37.363 17.751 4.234 4.353 4.391 

f8 30.450 58.403 52.996 22.797 31.960 20.020 

f9 1.398 43.828 17.425 1.240 1.419 1.426 

f10 0.353 37.978 17.627 0.340 0.245 0.259 

f11 0.185 37.113 17.457 0.187 0.164 0.176 

f12 0.278 47.925 10.592 0.224 0.168 0.172 

 EMA SCE QB 
EMA-

QB 

EMA-

SCE 

EMA-

SCE-QB 

f1 
9.00E-

06 

8.64E

-06 
0.004 

8.80E-

06 

8.88E-

06 
8.99E-06 

f2 
8.51E-

06 

7.39E

-06 

5.20E

-06 

8.34E-

06 

8.17E-

06 
8.14E-06 

f3 
8.19E-

06 

7.35E

-06 

7.08E

-06 

8.02E-

06 

7.95E-

06 
8.13E-06 

f4 
8.33E-

06 

7.33E

-06 

1.79E

-05 

8.16E-

06 

8.27E-

06 
7.72E-06 

f5 
7.41E-

06 

7.12E

-06 

7.93E

-06 

7.73E-

06 

7.50E-

06 
7.19E-06 

f6 
7.99E-

06 

7.98E

-06 

9.68E

-05 

8.35E-

06 

7.78E-

06 
8.34E-06 

f7 
8.87E-

06 
1.326 

0.000

2 

9.13E-

06 

8.94E-

06 
8.48E-06 

f8 
9.29E-

06 

7.34E

-06 
0.071 

9.06E-

06 

9.43E-

06 
9.15E-06 

f9 
9.43E-

06 

0.000

19 
0.040 

9.39E-

06 

9.46E-

06 
9.45E-06 

f10 
9.39E-

06 

8.59E

-06 
0.001 

8.50E-

06 

8.79E-

06 
8.83E-06 

f11 
8.01E-

06 

7.53E

-06 

0.000

1 

8.39E-

06 

7.86E-

06 
8.32E-06 

f12 0 0 0 0 0 0 

 EMA SCE QB 
EMA-

QB 

EMA

-SCE 

EMA-

SCE-QB 

f1 
9.29E-

06 
1.515 

0.010

7 

9.48E-

06 

9.29E-

06 
9.58E-06 

f2 
9.22E-

06 

0.000

8 

1.57E

-05 

9.29E-

06 

9.22E-

06 
9.21E-06 

f3 
8.93E-

06 

1.58E

-05 

7.58E

-06 

9.00E-

06 

8.93E-

06 
9.28E-06 

f4 
9.23E-

06 
0.099 

0.000

1 

7.67E-

06 

9.23E-

06 
8.31E-06 

f5 
8.55E-

06 

8.07E

-06 

6.73E

-06 

8.84E-

06 

8.55E-

06 
8.59E-06 

f6 
8.88E-

06 

38.51

5 

37.86

7 

9.20E-

06 

8.88E-

06 
9.04E-06 

f7 
9.46E-

06 
4.750 

14.49

5 

9.45E-

06 

9.46E-

06 
9.18E-06 

f8 
9.84E-

06 
9.145 8.862 

9.71E-

06 

9.84E-

06 
9.78E-06 

f9 
9.77E-

06 
2.439 0.261 

9.75E-

06 

9.77E-

06 
9.76E-06 

f10 
9.45E-

06 
0.124 0.004 

9.33E-

06 

9.45E-

06 
9.39E-06 

f11 
8.91E-

06 
0.194 0.001 

8.96E-

06 

8.91E-

06 
8.98E-06 

f12 0 5.3 0 0 0 0 
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Table VIII.  minimum of cost function for 30    

variables 

 

 
 

8. Conclusion 

In this paper, we presented three novel hybrid algorithms 

i.e., EMA-QB, EMA-SCE, and EMA-SCE-QB, based on 

three prominent and popular algorithms named EMA, 

SCE, and QB. To prove the effectiveness of the proposed 

algorithms, we implemented them for finding the 

optimum point of 12 continuous functions. We compared 

the obtained results with the ones from basic algorithms. 

By analyzing the obtained results, it was concluded that 

hybridization has resulted in enhancement in EMA 

algorithm procedure and formation of competitive 

algorithms with advantages like high accuracy, 

consistency, speed , and less execution time. In the future, 

we intend to utilize these reliable algorithms in the control 

area to design the transfer functions of various controllers 

for diverse plants and systems like robotic systems.

 

Table IX.  minimum of cost function for 50    
variables 
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 EMA SCE QB 
EMA-

QB 

EMA-

SCE 

EMA-

SCE-

QB 
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05 
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