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Abstract

This paper is associated with a nonlinear parabolic moving boundary problem raised from the mathematical
modeling of the behavior of the breast avascular cancer tumors at their first stage. This model is a modification

of the previous works. Using the weak form of the proposed problem, the uniqueness of the solution is proved.

Based on the finite difference method, a variable time step approach is proposed to solve the problem, numerically.
It is shown that the numerical approach preserves the positivity of the solution and is unconditionally stable. To

show the robustness and ability of the numerical method, the numerical and exact solutions are discussed and

compared for two examples with the exact solutions.
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1. Introduction

Oncologic mathematics is a pivotal discipline that has been of interest to many scientists. Today solution to
oncologic problems has crucial importance and a considerable amount of scientific literature has been devoted to the
employment of mathematical models and approaches to predict and describe the behavior of cancer tumors and the
physiologic and morphologic aspects of developments of tumors [2, 3, 16, 17]. Investigation of avascular tumors has
been the main goal of much research for instance [2, 3, 6, 16]. The avascular stage which is the early stage of tumor
formation happens in the absence of a vascular network. The passing from the avascular phase to vascular phase
is influenced by the capability of the tumor to produce new blood vessels which ultimately enter into the tumor to
obtain blood and oxygen supply and micro-circulation. According to the importance of detecting and investigating
the avascular tumors to treat them, this study is devoted to a mathematical model of the initial growth stage of breast
cancer known as ductal carcinoma in situ (DCIS).

Breast cancer, as the second leading cause of cancer death in women, is the subject of extensive studies in recent
years [1, 4, 5, 7, 12, 13, 18–20]. Detecting the cancer at the initial growth phase and analyzing its behavior in this
stage may be very helpful to treat this disease. To analyze and simulate the behavior and development of DSIS,
mathematical models are very useful tools. Many studies have been conducted in the literature concerned with the
mathematical modeling and investigation of the models. For instance, Franks et.al. established a mathematical model
for DSIS based on the compliant basement membrane tensions, the cell movement, and the interactions between the
forces caused by the proliferation of tumor cells [5]. Nicolien T. Van Ravesteyn et al. provided a comprehensive study
of the existing modeling of DCIS in [17]. Xu et al. have studied a number of moving boundary models of DCIS as
direct and inverse problems [18–20]. M. Garshasbi developed an iterative computational approach based on space
marching and mollification methods to solve an inverse moving boundary problem concerned with the DSIS models
[5].

In this paper in the wake of previous studies associated with DCIS models, we consider a modified model proposed
by Xu et al. ([18, 19]) as a nonlinear moving boundary problem. In this problem, determination of the unknown
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moving boundary is one of our goals which deals with a nonlocal boundary condition. In the moving boundary
problems, besides the fixed boundaries of the domain, there are boundaries across them where phase change takes
place which is time-dependent and maybe not known a priori. Usually, many conditions such as thermodynamic
equilibrium conditions are to be held on the moving boundaries. The moving boundary problems with unknown
moving boundaries are highly nonlinear and except for some simple cases, analytical solutions do not exist for them.
Because of the applications and importance of these kinds of problems, many numerical approaches have been proposed
to solve them in the literature [8–11, 15, 18–20]. In this work, we consider a modified form of a one-dimensional DCIS
model, as a moving boundary problem. After investigating the uniqueness of the solution of this problem, a numerical
approach is developed to solve this problem. The organization of this work is as follows:

In section 2, the mathematical formulation of the growth of an avascular tumor within the breast is briefly intro-
duced. The uniqueness of the solution of the problem is proved in section 3. In section 4, we develop a numerical
method based on the finite difference approach to solve the main problem numerically and the positivity of the nu-
merical solution is demonstrated. To show the ability of the numerical method, some test problems are considered in
section 5.

2. Problem statement

In this section, we consider a moving boundary problem concerned with the avascular tumor growth within the
breast duct, i.e. DCIS. At the first stage of cancer development, the tumor is noninvasive and has not extended
to other parts of the breast. However, without any treatments, it spreads to the tissues surrounding the duct and
becomes threatening to life. To characterize DCIS, many phenomena and assumptions may be considered and usually,
the models are so complex. In this study, we focus on the mathematical model of nutrient concentration. Considering
the diffusion and consumption as two pivotal processes that can control the distribution of nutrients for DCIS, we
may drive the following equation for nutrient concentration (for more details regard to the DCIS models we refer the
readers to [5, 18, 19] and the reference therein)

∂u

∂t
+∇.(uv) = D∇2u− kρ(u)ρ− αkp(u)p, (2.1)

where p, ρ, and u denote the densities of the proliferating cells, the surrounding fluid, and the nutrient, D shows the
diffusion coefficient, kp(u) and kρ(u) are proliferating and fluid rates and v is the local velocity of cells. According to
the literature, one may consider the rates as the following positive functions [4, 12]

kp(u) =
Apu

mp

u1 + αpump
, kρ(u) =

Aρu
mρ

u2 + αρumρ
, (2.2)

where Ap, Aρ, mp ≥ 1, mρ ≥ 1, u1, u2, αp and αρ are known constants.
We consider that the local velocity of cells is zero, the tumor is spherically symmetric and its boundary changes

with time as r = s(t). Implying these assumptions and considering the appropriate initial and boundary conditions,
we consider the problem of determination of (u(x, t), s(t)) from the DCIS diffusion model as follows

∂u

∂t
=

∂2u

∂x2
− λ(u, x, t)u+ F (x, t), (x, t) ∈ Ωt = (0, s(t)]× (0, T ),

(2.3)

u(x, 0) = f(x), 0 ≤ x ≤ s(t), (2.4)

ux(0, t) = 0, 0 < t < T, (2.5)

u(s(t), t) = g(t), 0 < t < T, (2.6)

ds

dt
= µ

∫ s(t)

0

(u(x, τ)− u0)dτ, s(0) = s0 > 0, (2.7)

where F (x, t), T, f(x), g(t), u0, µ , and s0 are known. The problem (2.3)-(2.7) has been studied in the literature for
λ = λ(t), λ = λ(x), and λ = λ(x, t) as direct and inverse problems [5, 18–20]. In this study, based on the problem
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assumptions, we study a modify form of the one-dimensional DCIS moving boundary problem for λ = λ(u, x, t). In
the next section the uniqueness of solution of problem (2.3)-(2.7) is discussed.

3. Properties of solution

In this section we address some important properties of solutions of problem (2.3)-(2.7). First we rewrite the
problem using x = ξs(t) as an equivalent nonlinear fixed domain initial-boundary value problem of parabolic type.
Implying this new variable changes x ∈ [0, s(t)] to ξ ∈ [0, 1]. Let

v(ξ, t) = u(ξs(t), t), λ̂(v(ξ, t), ξ, t) = λ(u(ξs(t), t), ξs(t), t),

F̂ (ξ, t) = F (ξs(t), t), f̂(ξ) = f(ξs(t)). (3.1)

From now on, for simplicity let us replace ξ by x and omit the hat sing. Then problem (2.3)-(2.7) can be derived as

∂v

∂t
=

1

s2(t)

∂2v

∂x2
+
xs′(t)

s(t)

∂v

∂x
− λ(v, x, t)v(x, t) + F (x, t), (x, t) ∈ Ω,

(3.2)

v(x, 0) = f(x), 0 ≤ x ≤ 1, (3.3)

vx(0, t) = 0, 0 < t < T, (3.4)

v(1, t) = g(t), 0 < t < T, (3.5)

s(t) = s0e
µ
∫ t
0

∫ 1
0

(v(x,τ)−u0)dxdτ , 0 < t < T, s(0) = s0, (3.6)

where Ω = (0, 1)× (0, T ]. Let make the following assumptions:

(A1) v(x, t) ∈ C1,2(Ω), and v(x, t) > u0. Then one may find a positive constant C such that | u(x, t) |< C.
(A2) λ : C1,2× (0, 1]× (0, T )→ R is continuous in all arguments and is Lipschitz continuous with respect to u, with

the Lipschitz constant L, i.e.

‖ λ(u, x, t)− λ(v, x, t) ‖≤ L ‖ u− v ‖ . (3.7)

To show the uniqueness of solution of problem (3.2)-(3.6), using the weak form of this problem and the following
lemma may be very helpful.

Lemma 3.1. In problem (3.2)-(3.6), we have

(I) 0 < s0 ≤ s(t) ≤ s0e
µ(C−u0)t,

(II) 0 ≤ s′(t) ≤ µ(C − u0)s(t).

Proof. Using equations (3.6) and (2.7) and considering assumption (A1), we obtain (I) and (II). �

Suppose

H1
0 (Ω) = {φ ∈ H1(Ω) | φ(1, t) = 0}.

Concern to the the inner product in the space H1[0, 1], one may conclude that for all φ ∈ H1
0 (Ω), the weak form of

problem (3.2)-(3.6) is

〈vt, φ〉 =
−1

s2
〈vx, φx〉 −

s′

s
〈vx, xφ〉+ 〈λv, φ〉+ 〈F, φ〉 , (3.8)

v(x, 0) = f(x), (3.9)

s(t) = s0e
µ
∫ t
0

∫ 1
0

(v(x,τ)−u0)dxdτ , s(0) = s0, (3.10)

where 〈., .〉 denotes the inner product.

Theorem 3.2. The weak solution of problem (3.2)-(3.6) is unique.
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Proof. Suppose that (v1, s1) and (v2, s2) are solutions of problem (3.8)-(3.10), and λi ≡ λ(vi, x, t); i = 1, 2. Then we
have: for i = 1 〈

v1
t , φ
〉

=
−1

s2
1

〈
v1
x, φx

〉
− s′1
s1

〈
v1
x, xφ

〉
+
〈
λ1v

1, φ
〉

+ 〈F, φ〉 , (3.11)

v1(x, 0) = f(x), (3.12)

s1(t) = s0e
µ
∫ t
0

∫ 1
0

(v1(x,τ)−u0)dxdτ , s1(0) = s0, (3.13)

and for i = 2 〈
v2
t , φ
〉

=
−1

s2
2

〈
v2
x, φx

〉
− s′2
s2

〈
v2
x, xφ

〉
+
〈
λ2v

2, φ
〉

+ 〈F, φ〉 , (3.14)

v2(x, 0) = f(x), (3.15)

s2(t) = s0e
µ
∫ t
0

∫ 1
0

(v2(x,τ)−u0)dxdτ , (3.16)

s2(0) = s0. (3.17)

Let w = v1 − v2, sw = s1 − s2, and λw = λ1 − λ2. Subtracting (3.14), (3.15) and (3.16) from (3.11), (3.12) and (3.13),
respectively obtains

〈wt, φ〉 =
−1

s2
1

〈wx, φx〉 −
(

1

s2
1

− 1

s2
2

)〈
v2
x, φx

〉
− s′1
s1
〈w, xφx〉

−
(
s′1
s2

1

− s′2
s2

2

)〈
v2, xφ

〉
+
〈
λ1v

1 − λ2v
2, φ
〉
, (3.18)

w(x, 0) = 0, (3.19)

sw(t) = s0

(
eµ

∫ t
0

∫ 1
0

(v1(x,τ)−u0)dxdτ − eµ
∫ t
0

∫ 1
0

(v2(x,τ)−u0)dxdτ
)
, (3.20)

sw(0) = 0. (3.21)

In equation (3.18), if we consider φ = w, then we derive

1

2

d

dt
‖w‖2 =

−1

s2
1

‖wx‖2 −
(

1

s2
1

− 1

s2
2

)〈
v2
x, wx

〉
− s′1
s1
〈w, xwx〉 −

(
s′1
s2

1

− s′2
s2

2

)〈
v2, xw

〉
+ 〈λ1w,w〉+

〈
(λ1 − λ2)v2, w

〉
. (3.22)

Let us recall that according to the Young inequality, for every µ, ν ∈ H0(0, 1) and ε > 0, we have

〈µ, ν〉 ≤ 1

2ε
‖µ‖2 +

ε

2
‖ν‖2. (3.23)

Then using the Young inequality and considering the assumption (A2) yield

1

2

d

dt
‖w‖2 ≤ −1

s2
1

‖wx‖2 +
ε1
2
‖wx‖2

+
1

2ε1
‖v2‖2

(
(s1 + s2)2s2

w

s4
1s

4
2

)
+
ε2
2
‖wx||2

+
1

2ε2

(
s′1
s

)2

‖w‖2 +
ε3
2
‖v2
x||2

+
1

2ε3

(
s′1
s1
− s′2
s2

)2

‖w‖2 + C2
M‖w‖2

+
ε4
2
L2‖w||2‖v1||2 +

1

2ε4
‖w‖2, (3.24)
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where εi, i = 1, 2, 3, 4 are arbitrary constants and CM is chosen such that | λ(v, x, t) |≤ CM . On the other hand using
Lemma 3.1 we have

0 ≤ s′1(t) ≤ µ(C − u0)s1(t), (3.25)

0 ≤ s′2(t) ≤ µ(C − u0)s2(t). (3.26)

Subtracting (3.26) and (3.25) yields

0 ≤ s′w ≤ µ(C − u0)sw. (3.27)

Now if we multiple both sides of inequality (3.27) by sw, we see that

1

2

d

dt
(s2
w) ≤ µ(C − u0)s2

w. (3.28)

One can combine the estimates (3.24) and (3.28) to give

1

2

d

dt

(
‖w‖2 + s2

w

)
≤

(
−1

s2
1

+
ε1
2

+
ε2
2

)
‖wx‖2

+

(
1

2ε2

s′1
s

+
1

2ε3

(
s′1
s1
− s′2
s2

)
+ C2

M +
ε4
2
L2‖v1||2 +

1

2ε4

)
‖w‖2

+

(
1

2ε1
‖v2‖2

(
(s1 + s2)2

s4
1s

4
2

)
+ µ(C − u0)

)
s2
w.

(3.29)

We can choose the constants εi; i = 1, 2 such that the coefficient of ‖wx‖2 in (3.29) be negative. Consequently we
may conclude that there is a function α = α(t) ∈ L2(0, T ) such that

1

2

d

dt

(
‖w‖2 + s2

w

)
≤ α(s2

w + ‖w‖2). (3.30)

On the other hand, it is clear that the initial conditions for ‖w‖ and sw are zero. Hence implying the Gronwall
inequality we see that ‖w‖2 = 0, s2

w = 0. �

4. A variable time step method

To solve the proposed nonlinear problem, in this section a numerical method based on the finite differences approach
is established. To this end, the ”x− t” domain is partitioned using a fixed space step ∆x and variable time step ∆t.
According to the variable time step method, the time step ∆tn at each time level tn is obtained such that the interface
or moving boundary moves exactly ∆x during the time interval [tn, tn+1] [8, 9]. Hence in this approach we deal with
the determination of the time step ∆tn = tn+1−tn such that the moving boundary moves from the position n∆x to the
position (n+ 1)∆x. To establish the numerical approach, we focus on problem (2.3)-(2.7) and use a backward implicit
finite difference approach to discretize the problem. Consider the space domain is divided into N subintervals using
the step size ∆x. Without losing the generality, because of considering the problem in the scaled and non-dimensional
form, we suppose that 0 ≤ x ≤ 1 and Ns0 is one on the node points. Therefore using (2.3)-(2.6), we may write the
problem in finite difference form as

un+1
i − uni

∆tn
=

un+1
i+1 − 2un+1

i + un+1
i−1

∆x2
− λni un+1

i + Fn+1
i , (4.1)

u0
i = fi ≡ f(xi), i = 0, 1, · · · , Ns0, (4.2)

un+1
−1 = un+1

1 , (4.3)

un+1
Ns0+n+1 = gn ≡ g(tn), (4.4)

where xi = i∆x, Fni = F (xi, tn) and uni , λ
n
i denote the approximate values of u(xi, tn) and λ(u(xi, tn), xi, tn+1),

respectively.
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We use equations (2.7) and (2.7) to determine the variable time steps. First at t = 0, we have

µ
∆x

∆t0
'

∫ s0

0

(u(ξ, 0)− u0)dξ. (4.5)

Using (4.5) one can easily find the first time step ∆t0. At any time level, let rn = ∆tn
∆x , then finite difference approach

(4.1)-(4.4) yields the following system of equations

GnU
n+1 = dn, (4.6)

where

Gn =



b0 c0 0 0 . . . 0
a1 b1 c1 0 . . . 0
0 a2 b2 c2 . . . 0

. . .
. . .

. . .

0 0 . . . aNs0+n−1 bNs0+n−1


,

ai = −rn, i = 0, 1, · · · , Ns0 + n− 1,

bi = 1 + 2rn + ∆tnλ
n
i , i = 0, 1, · · · , Ns0 + n− 1,

c0 = −2rn, ci = −rn, i = 0, 1, · · · , Ns0 + n− 1,

Un =
(
un+1

0 un+1
1 . . . un+1

Ns0+n−1

)T
,

dn =
(
d1
n d2

n . . . dNs0+n−2
n dNs0+n−1

n

)T
.

d1
n = un0 + ∆tnF

n+1
0 ,

dkn = unk + ∆tnF
n+1
k ; k = 1, 2, . . . , Ns0 + n− 2,

dnNs0+n−1 = unNs0+n−1 + ∆tnF
n+1
Ns0+n−1 + rngn+1.

Solving linear system (4.6) and using (2.7) we have

∆x

∆tn
' 1

µ

∫ s0+n∆x

0

(u(ξ, tn)− u0)dξ

' ∆x

2µ

(un0 − u0) + (unNs0+n − u0) + 2

Ns0+n−1∑
j=1

(unj − u0)

 .

Therefore, we may find ∆tn as

∆tn =
2µ

(un0 − u0) + (unNs0+n − u0) + 2
∑Ns0+n−1
j=1 (unj − u0)

. (4.7)

Theorem 4.1. If 1 + λni ∆tn > 0; i = 0, 1, · · · , Ns0 + n, and Fni > 0; i = 0, 1, · · · , Ns0 + n, then finite difference
method (4.2)-(4.7), preserves the positivity of solution of problem (2.3)- (2.7).

Proof. At each time level, the approximate solution Un is obtained by solving linear system (4.6). It is clear that
considering the positivity of 1+λni ∆tn; i = 0, 1, Ns0 +n yields that Gn is a is strictly diagonally dominant tridiagonal
matrix. In addition in Gn = (γm,p)(Ns0+n)×(Ns0+n), we find that γm,m > 0; m = 1, 2, · · · , Ns0 + n, and γm,p ≤
0; m 6= p. Hence one can easily see that Gn is a M-matrix too. Therefor Gn is nonsingular and the elements of
G−1
n are positive [14]. Considering the assumptions of this statement, we find that the elements of Un = G−1

n dn are
positive. �
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Theorem 4.2. Under assumptions of Theorem 4.1, the solution of finite difference method (4.2)-(4.7), is uncondi-
tionally stable.

Proof. To investigate the stability of the proposed finite difference approach, considering a separated solution uni =
θne

jβi∆x and substituting it in (4.1), yield

γi,i−1θn+1e
jβ(i−1)∆x + γi,iθn+1e

jβi∆x + γi,i+1θn+1e
jβ(i+1)∆x = dni, (4.8)

where dni is the elements of right hand side vector dn in (4.6), j =
√
−1 and β ∈ [0, π] shows the real spatial wave

number. Note that to analyze the stability of the method, we only need consider uni = θne
jβi∆x instead of din in (4.8).

Thus we obtain

θn+1 =
θn

γi,i−1e−jβ∆x + γi,i + γi,i+1ejβ∆x
. (4.9)

Now if we consider (4.8) as θn+1 = ηθn, then the method is stable if | η |< 1, that is

| 1

γi,i−1e−jβ∆x + γi,i + γi,i+1ejβ∆x
|< 1. (4.10)

We claim that this inequality is satisfied for each n = 1, 2, · · · , N −Ns0 and i = 1, 2, · · · , Ns0 +n. To prove this claim
first let i = 1, then we have

| 1

η
|2 = | b0 + c0e

jβ∆x |2

= b20 + c20 + 2b0c0 cos(β∆x) ≥ (b0 − c0)2

≥ (b0 − c0)2 = (1 + 4rn + ∆tnλ
n
i )2 > 1. (4.11)

This show for i = 1, our claim is satisfied. For i = 2, · · · , Ns0 + n− 2, we have ci = ai and can obtain

| 1

η
|2 = | aie−jβ∆x + bi + cie

jβ∆x |2=| ai(e−jβ∆x + ejβ∆x) + bi |2

= (b0 + 2c0 cos(β∆x))2 ≥ (1 + ∆tnλ
n
i )2 > 1.

Similar to i = 1, one may conclude that for i = Ns0 + n − 1, the clam is true and this complete the proof of this
statement. �

5. Numerical experiments

In this section to show the reliability and robustness of our proposed numerical approach, we implement the
proposed numerical method for a test problem. The exact solution of the test problem is used as a criteria to evaluate
the approximate solution. We use MATLAB R2014a software to implement the numerical procedure. Following
l2-error norm is used to evaluate the accuracy of the numerical results

E =

[
(1/(N −Ns0 + 1)(Ns0 + 1))ΣN−Ns0j=0 ΣNs0+j

i=0 | u(i∆x, tj + ∆tj)− uji |2
]1/2

[
(1/(N −Ns0 + 1)(Ns0 + 1))ΣN−Ns0j=0 ΣNs0+j

i=0 | v(ih, jl) |2
]1/2 . (5.1)

In addition, we use the following formula to compute the rate of convergency (P )

P =
ln(Ek/El)

ln(∆xk/∆xl)
. (5.2)
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Table 1. The relative l2 error norms at iteration n = 10 for Example 5.1.

∆x 1
20

1
40

1
80

1
160

1
320

1
640

1
1280

1
2560

l2-error 0.36832 0.08423 0.05147 0.04231 0.01903 0.00901 0.00498 0.00312
P – 2.12899 1.91514 1.84231 1.76231 1.71324 1.68376 1.62567

Example 5.1. In the problem (2.3)-(2.7) suppose

F (x, t) = e2t cosx+ e2t cosx sin(e2t cosx)

f(x) = cosx, λ(u, x, t) = sin(u), g(t) = e2t cos(2arccot(e3.4949− e2t2 ))

s0 = 0.1, u0 = 0, µ = 1.

One may find that the exact solution of this problem is

0 0.2 0.4 0.6 0.8 1 1.2

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

s(
t)

 

 

Numerical Solution, ∆ x=1/20

Numerical Solution, ∆ x=1/40

Numerical Solution, ∆ x=1/80

Numerical Solution, ∆ x=1/160

Numerical Solution, ∆ x=1/320

Numerical Solution, ∆ x=1/640

Exact Solution

Figure 1. The exact and approximate moving boundary function s(t) with respect to different values of ∆x
for Example 5.1.

u(x, t) = e2t cosx, s(t) = 2arccot(e3.4949− e2t2 ). (5.3)

Table 1 shows the relative l2 error norms between the numerical and exact solutions when the space mesh steps
varies from ∆x = 1

20 to ∆x = 1
2560 . This table shows that decreasing ∆x, increases the accuracy of the numerical

results.
In Figure 1, the exact and approximate moving boundary functions s(t) are shown for ∆x = 1

40 ,
1
80 ,

1
160 ,

1
320 ,

1
640 .

The numerical results are in good agreement with the exact solution when r ∆x considered appropriable small. Some
computed time mesh-nodes for ∆x = 1

600 and the values of u at x = 1
30 are reported in Table 2.

Table 2. Computed time nodes when ∆x = 1
600 , and the exact and numerical solutions for u at

x = 1
30 for Example 5.1.

t 0.12648 0.22507 0.29852 0.35586 0.40204 0.44017 0.47236 0.50011
u exact 1.28355 1.56331 1.81068 2.03072 2.22722 2.40368 2.56352 2.70981
u appr. 1.27200 1.55141 1.78917 1.99915 2.22383 2.41721 2.65609 2.81184

At x = s0, we plot the numerical and exact solutions for u(x, t) in Figure 4.
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Numerical Solution, ∆ x=1/80
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Figure 2. The exact and approximate solutions for u(s0, t), with respect to different values of ∆x for
Example 5.2.

Table 3. The relative l2 error norms at iteration n = 10 for Example 5.2.

∆x 1
20

1
40

1
80

1
160

1
320

1
640

1
1280

1
2560

l2-error 0.13052 0.01683 0.00367 0.00112 0.00043 0.00018 0.00008 0.00004
P – 2.9566 2.5899 2.28814 2.06137 1.90037 1.77863 1.66739

Example 5.2. As the second test problem, let suppose

F (x, t) = −1

2
e
t
2 coshx+

et cosh3 x

1 + e
3t
2 cosh2 x

,

f(x) = coshx, λ(u, x, t) =
u2

1 + u2
, g(t) = e

t
2 cosh(2arccoth(e4.99657−2e

t
2 )),

s0 = 0.1, u0 = 0, µ = 1.

The exact solution of problem (2.3)-(2.7) with the above assumptions is

u(x, t) = e
t
2 coshx, s(t) = 2arccoth(e4.99657−2e

t
2 ). (5.4)
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Numerical Solution, ∆ x=1/20

Numerical Solution, ∆ x=1/40

Numerical Solution, ∆ x=1/80

Numerical Solution, ∆ x=1/160

Numerical Solution, ∆ x=1/320

Numerical Solution, ∆ x=1/640

Exact Solution

Figure 3. The exact and approximate moving boundary function s(t) with respect to different values of ∆x
for Example 5.2.
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The relative l2 error norms between the numerical and exact solutions for ∆x = 1
20 , ...,∆x = 1

2560 are shown in
Table 3. It is clear that the accuracy of the numerical results is increased when we decrease ∆x.

In Figure 3, we demonstrate the plot of exact and approximate moving boundary functions s(t), for ∆x =
1
40 ,

1
80 ,

1
160 ,

1
320 ,

1
640 . We see that the numerical results are in good agreement with the exact solution for small

∆x. For ∆x = 1
600 , and x = 1

30 , some computed time mesh-nodes and the values of u at these points are considered
in Table 4.

Table 4. Computed time nodes when ∆x = 1
600 , and the exact and numerical solutions for u at

x = 1
30 for Example 5.2.

t 0.03435 0.07053 0.10480 0.13733 0.16827 0.19775 0.225898 0.25280
u exact 1.01751 1.03608 1.05399 1.07127 1.08797 1.10413 1.11978 1.13494
u appr. 1.01755 1.03614 1.05404 1.07133 1.08803 1.10420 1.11985 1.13502
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,t
)

 

 

 Numerical Solution, ∆ x=1/20

Numerical Solution, ∆ x=1/40

Numerical Solution, ∆ x=1/80

Numerical Solution, ∆ x=1/160

Numerical Solution, ∆ x=1/320

Numerical Solution, ∆ x=1/640

Exact solution

Figure 4. The exact and approximate solutions for u(s0, t), with respect to different values of ∆x for
Example 5.2.

The plot of numerical and exact solutions for u(x, t) at x = s0, is shown in Figure 4.

6. Conclusion

This paper concerns a mathematical model of diffusion of breast cancer at the first stage named DCIS, as a nonlinear
moving boundary problem. For the proposed moving boundary problem, the uniqueness of the solution is proved. A
numerical method based on a variable time step finite difference approach is developed to solve the problem. It is
shown that the numerical method preserves the positivity of the solution and is unconditionally stable. For two test
problems, the numerical results are shown which show the numerical results are in good agreement with the exact
solutions.
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