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Abstract

The present study used the association mapping method to identify molecular markers associated with morphological
traits using 407 SSR and AFLP markers for 148 barley genotypes. This experiment was carried out as an alpha-lattice
design with five incomplete blocks in two replications under normal and salinity stress conditions (EC = 12 ds m™) at the
Agriculture and Natural Resources Research Station, Yazd, Iran. The genetic structure of the population was divided into
two subpopulations (K = 2) using the Bayesian method and Structure 2.3.4 software. Association mapping was performed
based on a mixed linear model using TASSEL4.3.15 software. Association mapping under normal and salinity stress
conditions identified 38 and 43 significant marker-trait associations. Also, several common QTLs for the studied traits
were identified. Common markers among traits can be due to pleiotropic effects or linkage between genomic regions
involved in these traits. Several QTLs were stable for plant height and flag leaf area in different environmental conditions
and can be regarded as stable QTLs. Markers HVYM40-144, HVM40-147, HVYM40-152, and HVYM40-162 for plant height
and marker Bmag0606-147 for flag leaf area showed a significant association with these traits in both normal and salinity-
stress experiments. So, these QTLs can be suggested as stable gene loci. Identifying major gene loci influencing salinity
tolerance in barley can assist in the breeding of salinity tolerance in this crop.
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Introduction
Salinity in many arid and semi-arid regions is
considered a common agricultural problem and a
limiting factor in crop yield. Barley (Hordeum
vulgare L.) is one of the plant species that tolerate
salinity (Colmer et al. 2005; Munns 2005).
Association mapping is a new and powerful
tool to increase the information obtained from the

linkage analysis for the genetic study of

quantitative traits. Marker information obtained
from linkage maps has some constraints such as the
unavailability of segregating populations, lack of
proper linkage between plant traits and molecular
markers, and insufficient time, which reduce the
efficiency of these maps in identifying markers
related to plant traits (Gupta et al. 2005).
Association  analysis  provides  appropriate

information for researchers by eliminating these
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limitations, considering the structure and kinship
relationships [mixed linear model (MLM) method],
and eliminating false marker-trait associations.
Elakhdar et al. (2016b), over two years, identified
46 QTLs for 14 traits and one major QTL that
controled salinity tolerance on chromosomes 1H,
2H, 4H, and 7H, which are important in improving
barley salinity tolerance. A study to determine the
QTLs of salinity tolerance in barley was performed
with the association mapping method by Shei et al.
(2014). In this experiment, a wide range of salinity
tolerance was observed among barley genotypes,
and seven effective QTLs were located on
chromosomes 1H, 2H, 3H, 4H, and 5H. Others
such as Eleuch et al. (2008), Inostroza et al. (2009),
EL-Denary et al. (2012), Long et al. (2013),
Elakhdar et al. (2016a), and Fan et al. (2016) also
used association mapping under salinity stress in
barley.

Identification of major loci affecting salinity
tolerance in barley can increase the efficiency of
breeding for this characteristic. Therefore, this
study was conducted to determine the markers
associated with some morphological traits of barley
by association mapping under normal and salinity-

stress conditions.

Materials and Methods

Germplasm

In this study 148 modern European two-row spring
barley  cultivars, representing commercial
germplasm from northern and western Europe were
investigated (Kraakman et al. 2004). The seeds
were received from Khorasan Razavi Agricultural
and Natural Resources Research and Education

Center, Iran.

Phenotyping

The experiment was conducted as an alpha-lattice
design with five incomplete blocks in two
replications under normal and salinity-stress (EC=
12 ds m?) environments at the Agriculture and
Natural Resources Research Station of Yazd (31°
55' N, 54°16'E, 1213 m from sea level), Iran. Each
block included 30 plots. Salinity treatment was
applied with the irrigation water. The field soil in
this experiment was naturally saline. Soil salinity
was measured regularly during the growth period.
The soil salinity was kept constant at the desired
level through the amount of water used and the
need for soil leaching. The studied traits include
biomass, plant height, spike length, flag leaf length,
flag leaf width, and flag leaf area. The data
normality test was performed based on the
Kolmogorov-Smirnov.  method using SPSS
software. Then, the combined analysis of variance

was performed with SAS 9.1 software.

Genotyping

In this study, a genetic map of molecular markers,
including 407 AFLP and SSR markers, which was
prepared by Kraakman et al. (2004), Kraakman et
al. (2006), and Aghnoum et al. (Unpublished data)
was used. Kraakman et al. (2004) used 14 AFLP
primers (E33M54, E35M48, E35M54, E35M55,
E35M61, E37M33, E38M50, E38M54, E38M55,
E39M61, E42M32, E42M48, E45M49, E45M55)
for genotyping and identified 286 polymorphic
markers. Then, in 2006, 11 SSR primers
(Bmac0018, Bmag0009, HVM14, HVM22,
HVM65, HVM74, Bmag0223, Bmac0134,
HVM54, Bmac0163, Bmac0316) were added to the
genotyping map (Kraakman et al. 2006). Also,
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Aghnoum et al. (unpublished data) mapped 21 SSR
molecular markers (EBmac0603, GBMSO035,
HVM36, scssr10559, Bmag0225, Bmag0841,
Bmag0606, Bmag0013, HVM40, GBM1482,
GBM1015, GBMS062, Bmac0399, EBmac0560,
HvHVAL1, Bmag0500, GBM1021, Bmag0173,
scssr07106, Bmag0357, Bmag0222) in this
population. Finally, considering all the different
alleles of AFLP and SSR markers, 407
polymorphic markers were used in their
population. Aghnoum et al. (2010) obtained the
sites of mapped QTLs from an integrated barley
genetic map consisting of 6990 molecular markers.
This integrated genetic map included seven linkage
groups and the molecular markers density was

0.125 markers per cM.

Population structure (Q-matrix) and Kkinship
relationships (K-matrix)

Since natural populations are used in the
association analysis studies, there should be no
structure in the population because the presence of
structure may cause unreliable results. Therefore, if
in association mapping, the effect of population
structure and kinship relationships is not
considered, the linkage equilibrium increases. As a
result, false-positive results occur, leading to false
marker-trait associations (Breseghello and Sorrells
2006; Yu and Buckler 2006; Zhang et al. 2012).
Therefore, to determine the population structure
(Q-matrix), the Bayesian method and Structure
2.3.4 software (Pritchard et al. 2000; Falush et al.
2003) were used on the genotypic data. The
Bayesian method attributes each genotype to
hypothetical subpopulations with a probability that

in each subpopulation, the linkage disequilibrium

iS minimum and the gamete equilibrium is
maximum. The analysis was performed on 148
barley genotypes in the Admixture model. The
length of the Burnin period was 100,000, and the
number of Markov Chain Monte Carlo (MCMC)
replications was 100,000. K was set from 1 to 10,
and 10 iterations was considered. The optimal K
was determined based on the delta K method.
Finally, the Q-matrix was calculated with the same
software by determining the optimal K, related to
the highest value of delta K. Also, using genotypic
data, the kinship relationships (K-matrix) were
determined by TASSEL4.3.15 software.

Linkage disequilibrium and association analysis
To do the associations mapping, the linkage
disequilibrium for each pair of markers was
estimated by the r? statistic for each linkage group
with TASSEL 4.3.15 software (Bradbury et al.
2007). Marker-trait associations were determined
using the MLM with TASSEL 4.3.15 software. In
the MLM method, in addition to the genotypic data,
the phenotypic data, population structure (Q-
matrix), and kinship relationships (K-matrix) were
also used as covariates in the model (Yu et al.
2006). In the association analysis, only the markers
with a frequency of more than 10% were used, and
the p-value with 1000 permutations was estimated.
Finally, MapChart software was utilized to show

the mapped gene loci.

Results

Analysis of variance

The combined analysis of variance in normal and
salinity-stress  conditions showed significant

genetic variability among genotypes in all traits
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except biomass, indicating large diversity in the
population (Table 1). The genotype x environment
interaction was significant for the plant height and
spike length. The effect of the environment was
significant for biomass, plant height, and spike
length.

Population structure
According to Table 2 and Figure 1, the K = 2,
which corresponds to the highest value of Delta K,
was determined as the optimum K, so it was the
most appropriate number to calculate the Q-matrix.
Finally, the Q-matrix was obtained by placing K =
2 in the Structure 2.3.4 software.

The bar plot provided by Structure 2.3.4
software for 148 barley genotypes (Figure 2) also

confirms the optimum K value. The horizontal axis

is related to the genotypes, and the vertical axis
shows the share of each genotype in each group. In
this bar plot, when the percentage of genotype
membership in one cluster was more than or equal
to 0.7, the genotype was assigned to that cluster. If
the membership percentage was less than this
value, it was considered a mixed genotype (Spataro
et al. 2011). Here, each group was marked with a
distinct color and the two separate colors for each
genotype indicated that the genotype belongs to
one of the two groups or both groups. Then, the
number of clusters that better represented the
population structure (kinship relationships defined
by the by
TASSEL4.3.15 software for use in the MLM

K-matrix) was determined

method.

Table 1. Combined analysis of variance of the studied traits in non-stress and salinity stress conditions

Mean squares

Source of variation df

Bio PH SL FLL FLW FLA
Environment (E) 1 60~ 104458~ 4979175~  5.24"s 0.06" 3.75M
Rep/E 2 18.7" 389.7" 60.4"s 9.28" 0.08" 15.8"¢
Genotype (G) 147 2.04ns 94.8™ 86.1° 6.35™ 0.05™ 13.14™
GxXE 147 2150 413 75.3" 2.50s 0.025"s 8.5ms
Block 16 2.44ns 83.4™ 76.7"s 3.3 0.06™ 1308
Error 277 2.04 28.6 51.9 2.44 0.024 8.9
R-square (%) - 57 81 973 67 64.6 58
CV (%) : 68 11 19.8 25.6 372 1339

n.s, * and **: Not-significant and significant at 5% and 1% probability levels, respectively. Bio: Biomass, PH: Plant height, SL:
Spike length, FLL: Flag leaf length, FLW: Flag leaf width, FLA: Flag leaf area, CV: Coefficient of variation.

Table 2. Statistics calculated for optimum K values using Structure software 2.3.4.

K L(K) Stdev L'(K) L"(K) IL"(K)| Delta K
1 -24682.1 112 - - - -

2 -23249.7 271 1432.41 -611.03 611.03 225.27
3 -22428.3 8.24 821.38 22.84 22.84 2.77
4 -21584.1 218.84 844.22 -289.44 289.44 1.32
5 -21029.4 197.77 554.78 -118.56 118.56 0.599
6 -20593.1 122.63 436.22 -218.4 218.4 1.78
7 -20375.3 50.22 217.82 44.17 44.17 0.88
8 -20113.3 95.84 261.98 -3525.2 3525.2 36.78
9 -23376.6 8275.19 -3263.22 5002.65 5002.65 0.605
10 -21637.1 3430.18 1739.43 -1739.43 1739.43 0.507

L(K): LnP(D) average of all iterations for each K, L'(K): L(K)n- L(K)n-1, L"(K): L'(K)n- L'(K)n-1, Delta K (AK):|L"(K)|/ Stdev.
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Linkage disequilibrium and association mapping
The r? statistic estimated the linkage disequilibrium
associated with each pair of markers for each
linkage group (multi-allelic gene locus), and the
average of r? was 0.02. The results obtained from
the MLM identified 38 and 43 significant marker-
trait associations (p< 0.001) under normal and
salinity stress conditions, respectively (Table 3). In
the normal conditions, the markers that were
associated with different traits were as follows: 10

DNA markers with biomass (on chromosomes 2H,
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Figure 2. The bar plot was drawn based on 407 AFLP and SSR markers by Structure 2.3.4 software; the horizontal axis
is related to the genotypes, and the vertical axis shows the share of each genotype in each group.
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3H, 4H, 5H, 6H, and 7H), nine markers with the
plant height (on chromosomes 4H and 7H), two
markers with the flad leaf length (on chromosome
3H), twomarkers with the flag leaf width (on
chromosome 3H), and 15 markers with the flag leaf
area (3H, 5H, and 7H). Under salinity stress (Table
4), the associated markers were as follows: one
DNA marker with biomass, four markers with the
plant height (on chromosome 4H), three markers
with spike length (on chromosomes 3H and 6H), 10

markers with the flag leaf length (on chromosomes
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Table 3. Markers associated with studied traits in barley genotypes based on the mixed linear

model under normal conditions.

Trait Marker R? P-value  Chromosome P(()(s;;\t/:;)n

E33M54-100 0.25 0.000000 77.5 4H

E37M33-256 0.11 0.00047 - Unmapped

E37M33-260 0.12 0.0002 - Unmapped
E37M33-583 0.11 0.00034 24 z

BY E42M32-156 0.10 0.0008 - Unmapped
E42M32-200 0.13 0.0001 77.8 5H
E42M32-231 0.13 0.00015 235 7H

E42M32-271 0.15 0.00003 - Unmapped
E42M32-338 0.10 0.001 1135 2H
Bmag0500-194 0.17 0.00001 29.2 6H

E42M48-087 0.11 0.0005 - Unmapped
EBmac0603-183 0.11 0.0007 38.3 7H
EBmac0603-143 0.10 0.001 38.3 7H
GBMS035-147 0.11 0.0005 49 7H
PH GBMS035-137 0.13 0.00018 49 7H
HVM40-144 0.13 0.00016 32.3 4H
HVM40-147 0.14 0.00006 32.3 4H
HVM40-152 0.13 0.00013 32.3 4H
HVM40-162 0.14 0.00006 32.3 4H
SL - - - - -
FLL Bmag0606-126 0.11 0.00053 1125 3H
Bmag0606-269 0.08 0.00066 1125 3H
FLW Bmag0606-126 0.11 0.00055 1125 3H
Bmag0606-269 0.08 0.00075 1125 3H
EBmac0603-170 0.11 0.00061 38.3 7H
EBmac0603-183 0.10 0.00082 38.3 7H
EBmac0603-143 0.10 0.00088 38.3 7H
EBmMac0603-178 0.10 0.00093 38.3 7H
EBmMac0603-153 0.10 0.00094 38.3 7H
GBMS035-137 0.11 0.00065 49 7H
Bmag0606-151 0.11 0.00056 1125 3H
FLA Bmag0606-138 0.11 0.00055 1125 3H
Bmag0606-126 0.13 0.00017 1125 3H
Bmag0606-147 0.12 0.00022 1125 3H
Bmag0606-118 0.11 0.0005 1125 3H
Bmag0606-122 0.11 0.0005 1125 3H
Bmag0606-269 0.11 0.00011 1125 3H
Bmag0222-153 0.11 0.00063 141.7 5H
Bmag0222-185 0.11 0.00063 141.7 5H

See Table 1 for the abbreviation of the traits used here. R?: Coefficient of determination, cM: Centimorgan.

1H, 4H, and 6H), 11 markers with the flag leaf
width (on chromosomes 1H, 3H, 4H, and 6H), and
14 markers with the flag
chromosomes 1H, 3H, 4H, and 6H). The genetic
map of SSR and AFLP markers and the genomic

leaf area (on

location of markers with significant association

with the studied traits are shown in Figure 3.

Discussion

The combined analysis of variance showed large

genetic variability among the barley genotypes for
the studied traits. The significant genotype x
environment interaction for the plant height and
spike length indicates different responses of the
genotypes to the two environmental conditions for
these traits. Zaare and Jafari (2013) and Khalili and
Mohammadian (2016) also reported significant
genotype x environment interaction for some traits
in salinity conditions. G x E interaction usually

affects the efficiency of phenotypic selection in
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Table 4. Markers associated with studied traits in barley genotypes based on the mixed linear
model under salinity stress conditions.

Trait Marker R? P-value Chromosome Position (cM)
BY E42M32-273 0.10 0.001 - Unmapped

HVMA40-144 0.16 0.00002 32.3 4H
PH HVMA40-147 0.16 0.00002 32.3 4H
HVMA40-152 0.16 0.00002 32.3 4H
HVM40-162 0.17 0.00001 32.3 4H
Bmag0606-269 0.08 0.0008 1125 3H
SL HVM65-131 0.1 0.0007 60.7 6H
HVM65-132 0.1 0.0007 60.7 6H
HVMA40-144 0.11 0.001 32.3 4H
HVM40-147 0.11 0.0004 32.3 4H
HVM40-162 0.12 0.0002 32.3 4H
HVHVAL-140 0.10 0.001 102.49 1H
FLL Bmag0500-110 0.12 0.0004 29.2 6H
Bmag0500-146 0.12 0.0002 29.2 6H
Bmag0500-166 0.12 0.0003 29.2 6H
Bmag0500-181 0.11 0.0004 29.2 6H
Bmag0500-192 0.11 0.00037 29.2 6H
Bmag0500-194 0.11 0.00037 29.2 6H
Bmag0606-147 0.11 0.0006 1125 3H
HVM40-144 0.11 0.00059 32.3 4H
HVM40-162 0.12 0.00033 32.3 4H
Bmac0399-152 0.10 0.001 30.7 1H
Bmag0500-110 0.11 0.0005 29.2 6H
FLW Bmag0500-146 0.12 0.0003 29.2 6H
Bmag0500-166 0.12 0.0003 29.2 6H
Bmag0500-181 0.11 0.0005 29.2 6H
Bmag0500-192 0.11 0.0005 29.2 6H
Bmag0500-194 0.11 0.00041 29.2 6H
Bmag0173-156 0.11 0.00055 57.79 6H
FLA Bmag0606-147 0.11 0.0007 112.5 3H
HVMA40-144 0.11 0.0005 32.3 4H
HVMA40-147 0.10 0.0007 32.3 4H
HVM40-162 0.12 0.0002 32.3 4H
Bmac0399-138 0.10 0.001 30.7 1H
Bmac0399-143 0.10 0.0007 30.7 1H
Bmac0399-152 0.11 0.00062 30.7 1H
Bmag0500-110 0.11 0.0004 29.2 6H
Bmag0500-146 0.12 0.00022 29.2 6H
Bmag0500-166 0.12 0.0003 29.2 6H
Bmag0500-181 0.11 0.0004 29.2 6H
Bmag0500-192 0.11 0.0004 29.2 6H
Bmag0500-194 0.11 0.00038 29.2 6H
Bmag0173-156 0.10 0.0008 57.79 6H

See Table 1 for the abbreviation of the traits used here, R?: Coefficient of determination, cM: Centimorgan.

breeding programs (Sallam et al. 2019). can be a barrier to achieving reliable results. Hence,

In genetic studies, population structure determining the population structure as a
describes the relationships of the individuals within prerequisite in association mapping can prevent
and between populations and provides an overview false-positive associations between markers and
of evolutionary relationships in a population. traits (Pritchard and Donnelly 2001). This study
Ideally, for an association mapping, there should be subdivided  barley  cultivars into  two

no structure in the population because the structure subpopulations. Some reports suggest that the
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Figure 3. The genetic map of SSR and AFLP markers and genomic location of markers significantly associated with the
studied traits in barley (See Table 1 for the abbreviation of the traits used here, S: Salinity stress, N: Normal).
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population structure of barley cultivars is related to
spike morphology (two-rowed versus six-rowed
cultivars) (Pasam et al. 2012). In the association
mapping method, QTLs are located based on
linkage disequilibrium (Gupta et al. 2005). In this
study, the mean of r?, an indicator for linkage
disequilibrium, was 0.02, which indicates that
some loci are in linkage disequilibrium. Several
studies have previously reported different rates of
linkage disequilibrium in different barley
populations (Caldwell et al. 2006; Ramsay et al.
2011) and among different chromosomes (Rostoks
et al. 2006). Caldwell et al. (2006) reported rapid
decay of linkage disequilibrium in barley landraces
compared to barley cultivars. Eleuch et al. (2008),
Inostroza et al. (2009), EL-Denary et al. (2012),
Long et al. (2013), Shei et al. (2014), Elakhdar et
al. (2016a), Elakhdar et al. (2016b) and Fan et al.
(2016) used association mapping under salinity
stress in barley.

Eighty-one  significant markers  were
identified for the studied traits in normal and
salinity-stress conditions. This study found 10
QTLs for biomass on chromosomes 2H (113.5
cM), 3H (24 cM ), 4H (77.5 cM), 5H (77.8 cM),
6H (29.2 cM), 7H (23.5 cM), and four QTLs with
unknown gene locations in normal conditions.
Gene locations identified were unknown under
salinity stress conditions. Elakhdar et al. (2016b)
identified biomass on chromosomes 4H (58.6 cM),
6H (7.16 cM), 7H (65.9 cM), and 7H (97 cM) under
salinity-stress conditions in barley.

This study detected nine and four significant
marker-trait associations for plant height under

normal and salinity-stress conditions. At salinity-

stress conditions, four QTLs on chromosome 4H
(32.3 cM) and in normal conditions, five QTLs on
chromosome 4H (38.3 cM), two QTLs on 7H (38
cM), and two QTLs on 7H (49 cM) were identified
for the plant height. The QTLs identified in two
close positions (38.3 and 49 cM) on chromosome
7H, indicated that plant height is probably
associated with this position. Xu et al. (2012)
identified this trait on chromosome 7H under
normal conditions in barley, which is consistent
with our results. Elakhdar et al. (2016b) in a study
on barley at normal and salinity stress conditions,
showed that this trait had a significant association
with marker EBmac0603 on chromosome 7H at
35.39 cM position, which is similar to our results.
Sayed et al. (2021) identified plant height loci on
chromosome 7H, Long et al. (2013) on
chromosomes 2H (59.2 cM), 6H (60.2 cM), 7H
(4.9 cM), and 7H (61.3 cM), Eleuch et al. (2008)
on 1H (62 cM) and 6H (10 cM), Inostroza et al.
(2009) on 2H (5, 50, and 44 cM), 4H (78 and 118
cM), 5H (66 and 126 cM), 6H (79), and 7H (80, 85
and 107 cM), EL-Denary et al. (2012) on 2H, Xue
et al. (2009) on 3H under salinity stress conditions
in barley.

In this study, two QTLs were identified for the
spike length on chromosome 6H at 60.7 ¢cM and
one QTL on chromosome 3H at 112 cM in the
salinity-stress ~ conditions.  Under  normal
conditions, no significant association was
observed with the markers for the spike length.
Wang et al. (2014) identified loci associated with
this trait on chromosomes 2H and 5H in barley.
Jabbari et al. (2018) identified loci for spike length
on chromosome 5H (86.88 and 41.4 cM) under
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normal conditions in barley.

Based on the results, two QTLs were
identified for the flag leaf length on chromosome
3H (112.5 cM) in normal conditions and six QTLSs
on chromosome 6H (29.2 cM), three QTLs on
chromosome 4H (32.3 cM), and one QTL on
chromosome 1H (102.49 cM) in salinity-stress
conditions. Jabbari et al. (2018), under normal
conditions, identified QTLs for this trait on
chromosomes 2H, 5H, 5H, and 6H, which were
located in the positions of 3.8, 5.55, 157.148, and
121.819 cM, respectively in barley. Koochakpour
et al. (2021), in a study on barley, identified
genomic loci for the flag leaf length on
chromosomes 2H, 4H, and 4H, which were located
in the positions of 14.77, 120.64, and 125.05 cM,
respectively. Also, Gyenis et al. (2007) identified
three QTLs on 3H, 5H, and 7H, Xue et al. (2008)
four QTLs on 5H and 7H, Liu et al. (2015) seven
QTLs on 2H, 3H, and 7H for the flag leaf length.

In this study, two QTLs were identified for the
flag leaf width on chromosome 3H (112.5 cM) in
normal conditions and one QTL on chromosome
1H (30.7 cM), one QTL on 3H (112.5 cM), six
QTLs on 6H (29.2 cM), two QTLs on 4H (32.3
cM), and one QTL on 6H (57.79 cM) in salinity-
stress conditions. Jabbari et al. (2018), under
normal conditions in barley, identified genomic
loci for this trait on chromosomes 2H, 3H, 5H, and
7H, which were located at positions 3.8, 10.66,
130.99, and 25.31 cM, respectively. Gyenis et al.
(2007) found three QTLs on 2H, 4H, and 5H, Liu
et al. (2015) identified five QTLs on 2H and 4H,
and Shahraki and Fakheri (2016) located three
QTLs on 2H and 5H which were associated with

the flag leaf length.

This study detected 15 and 14 significant
marker-trait associations for the flag leaf area in
normal and salinity-stress conditions, respectively
as follows: seven QTLs on chromosome 3H (112.5
cM), two QTLs on 5H (141.7 cM), five QTLs on
7H (38.3 cM), and one QTL on 7H (49 cM) in
normal conditions, and three QTLs on 1H (30.7
cM), one QTL on 3H (112.5 cM), six QTLs on 6H
(29.2 cM), three QTLs on 4H (32.3 cM), and one
QTL on 6H (57.79 cM) under salinity-stress
conditions. ELakhdar et al. (2016a) identified
genomic loci for this trait on chromosome 1H at
87.83 cM under salinity-stress conditions.

Some of the identified DNA markers were
common among several traits in this study.
Bmag0606-126 and  Bmag0606-269  on
chromosome 3H at 112.5 cM were common for the
flag leaf length, flag leaf width, and flag leaf area
in normal conditions. Also, EBmac0603-183 and
EBmac0603-143 on chromosome 7H at 38.3 cM
and GBMS035-137 on 7H at 49 cM were common
for the plant height and flag leaf area.

Under salinity-stress conditions, HVYM40-144
and HVM40-162 on chromosome 4H at 32.3 cM
were common for the plant height, flag leaf length,
flag leaf width, and flag leaf area. Also, HVYM40-
147 on chromosome 4H at 32.3 cM was common
for the plant height, flag leaf length, and flag leaf
area. Bmag0500-110, Bmag0500-146, Bmag0500-
166, Bmag0500-181, Bmag0500-194, and
Bmag0500-192 on chromosome 6H at 29.2 cM
were common for flag leaf length, flag leaf width,
and flag leaf area. Bmag0606-147 on chromosome
3H at position 112.5 c¢M, Bmac0399-152 on
chromosome 1H at 30.7 cM, and Bmag0173-156

on chromosome 6H at 57.79 cM were common for
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flag leaf width and flag leaf area. Common
markers among traits can be due to pleiotropic
effects or linkage between genomic regions
involved in these traits (Jun et al. 2008). Of course,
the presence of common markers is valuable when
they are associated with large-effect QTLs, and are
also stable that can be identified by repeated
testing. However, in this experiment, the
coefficient of determination was negligible for
most traits. However, this phenomenon was not
unexpected because the nature of QTLs is such that
several positions are involved in one trait, and a
high coefficient of determination for a marker is
unexpected.

Gene loci that act the same in different
environments can be introduced as stable QTLs.
The stability of QTLs in different environments is
due to the control of traits by a small number of
large-effect gene loci. In this case, the marker-
assisted selection will be efficient in this
population. In our study, a significant association
of HYM40-144, HVM40-147, HVM40-152, and
HVM40-162 on chromosome 4H at 32.3 cM with
plant height and Bmag0606-147 on chromosome
3H at 112.5 cM with flag leaf area was observed in
both normal and salinity-stress experiments. So

these QTLs can be introduced as stable gene loci.
Conclusion
The present study showed that the MLM method

can effectively identify markers associated with
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