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Abstract

The radial basis functions (RBFs) meshless method has high accuracy for the interpolation of scattered data in

high dimensions. Most of the RBFs depend on a parameter, called shape parameter which plays a significant role

to specify the accuracy of the RBF method. In this paper, we present three algorithms to choose the optimal
value of the shape parameter. These are based on Rippa’s theory to remove data points from the data set and

results obtained by Fasshauer and Zhang for the iterative approximate moving least square (AMLS) method.

Numerical experiments confirm stable solutions with high accuracy compared to other methods.

Keywords. Radial basis functions, Shape parameter, Leave-One-Out cross validation, Leave-Two-Out cross validation, Approximate moving least

squares.

2010 Mathematics Subject Classification. 65D05, 65D15, 65M70.

1. Introduction

An important class of numerical methods for the solution of partial differential equations and scattered data
interpolation is the meshless methods. Some of them are the point interpolation method [25], the local point
interpolation method [20], the smooth particle hydrodynamics method [18], the diffuse element method [17], the
element free Galerkin method [24], the meshless local Petrov-Galerkin method [1], and the radial basis functions
method [3, 5, 15].

Among those, the radial basis functions (RBFs) method is the most reliable one in many fields. In this method,
we do not mesh the geometric space of the problem, but instead, use some scattered points in the desired domain.
Since the RBF method uses pairwise distances between points, so it is efficient for problems with high dimensions and
irregular domains. Radial basis functions are classified into two main classes [6, 21].
Class 1. Infinitely smooth RBFs.
These basis functions are infinitely differentiable and depend on a parameter, called shape parameter ε ( such as
Multiquadric(MQ), Inverse Multiquadric (IMQ) and Gaussian (GA)).
Class 2. Finitely smooth RBFs.
These basis functions are not infinitely differentiable and are lacking the shape parameter. Also, these functions have
less accurate than ones in Class 1. ( such as Thin Plate Splines (TPS)).
The shape parameter is determined by the user and can also be used to increase the accuracy of the method, which
is often considered as a drawback since the proper selection of ε is still an open question. To solve this issue, several

attempts are made such as Hardy [19] employed ε = 0.815d for MQ basis in R2 where d = 1
N

∑N
i=1 di and di is

the distance between the ith data point and its closest neighborhood, also N is the number of data. Franke [16]
defined ε = 1.25D√

N
in which D is the diameter of the smallest circle containing all data points. Carlson and Foley [4]

recommended that the optimal value of ε is independent of the number and position of data points. Furthermore,
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they suggested using the same value of ε for MQ and IMQ RBF interpolation. Rippa [29] observed that the optimal
value depends on the number and position of grid points, the approximated function, the precision of the calculation,
and the kind of RBF interpolation. Moreover, Rippa introduced an algorithm made on the Leave-One-Out Cross
Validation (LOOCV) method to pick the optimal value of ε for any RBF and any dimension by minimizing a cost
function. Scheuerer [30] improved Rippa’s algorithm for a cost function by using some new weighted error and showed
to be equivalent to the so-called maximum likelihood estimator method that is used to compute covariance parameters
of stochastic processes in spatial statistics.

Small values of the shape parameter are well known to make highly accurate results, but the coefficient matrix
of interpolation becomes ill-conditioned. One alternative method to solve this problem is the approximate moving
least squares method which is a quasi-interpolation approach. Lancaster and Salkauskas [22] provided the moving least
squares (MLS) method for smoothing and interpolating data. In [27], Maz’ya suggested the approximate MLS (AMLS)
method that avoids solving any linear systems. Fasshauer and Zhang later did more research on the AMLS method
and used it instead of the RBF approximation [7–9, 11, 14]. The AMLS method is principally suitable for regular
grid points because the formulation for irregular grid points is more difficult [23, 26]. In [14], Fasshauer and Zhang
showed that the AMLS method performs well for both regular and irregular grid points as an RBF approximation.

Fasshauer and Zhang [14] stated an algorithm based on the residual iteration of an AMLS method that converges to
the RBF approximation. Then they used this algorithm and Rippa’s theory to propose two different LOOCV schemes
in order to find an optimal shape parameter [13]. These methods do not require costly matrix calculations and perform
well for the approximation of noisy data.

Azarboni et al. [2] declared Leave-Two-Out Cross Validation (LTOCV) method by removing two data from the
data set and utilized the results of Fasshauer and Zhang. They indicated that the accuracy of the LTOCV method is
better than the LOOCV method but the computational time is increased.

In this paper, we use and extend the results obtained from elimination methods and the AMLS method. We
introduce an iterative LTOCV algorithm by the iterative AMLS method. Moreover, we offer a generalized formula for
the cost function to remove P data from the data set, this method is called Leave-P-Out Cross Validation method, and
apply this method for P = 3. Also, we gain an iterative Leave-Three-Out Cross Validation algorithm by the iterative
AMLS method. Numerical results illustrate the accuracy, efficiency, and stability of our methods in comparison with
other methods, but the computational time with the growth of deleted points increases.

The rest of the paper is structured as follows. In section 2, a review of the previous studies is mentioned. In section
3, some new approximation methods for selecting the optimal shape parameter are explained. Numerical examples
are included in section 4.

2. Preliminaries

In this section, we will briefly explain some basic definitions and items required in this study.

2.1. RBF Approximation. An RBF approximation is a linear combination of radial basis functions of the form

W(x) =

N∑
i=1

ciϕ(‖x− xi‖), x ∈ Rd. (2.1)

To interpolate the given values f(xi) = fi, i = 1, 2, . . . , N, at scattered data set x = {xi;xi ∈ Rd, i = 1, 2, . . . , N} such
that

W (xi) = fi, i = 1, 2, . . . , N. (2.2)

Scattered data set x is called the center nodes of the RBF approximation, ‖·‖ is usually the Euclidean norm and
ϕ (r), such that r ≥ 0, is a radial basis function. Some popular choices of radial basis functions are summarized in

Table 1. The unknown vector c = (c1, c2, . . . , cN )
T

is specified by applying the interpolation conditions (2.2), which
is corresponding to solve the linear system of equations

Ac = f , (2.3)
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where Aij = ϕ (‖xi − xj‖) and f = (f1, f2, . . . , fN )
T

. In [28], Micchelli investigated the non-singularity of the matrix
A for MQ-RBF. Also, Schoenberg [31] showed that the matrix A is positive definite and so nonsingular for GA, IMQ,
IQ RBFs.

Table 1. Some radial basis functions.

Name of the function RBF form

Gaussian (GA) ϕ (r) = e−ε
2r2

Multiquadric (MQ) ϕ (r) =
√

1 + ε2r2

Inverse Multiquadric (IMQ) ϕ (r) = 1√
1+ε2r2

Inverse Quadric (IQ) ϕ (r) = 1
1+ε2r2

2.2. Leave-One-Out Cross Validation Method. In [29], Rippa suggested an algorithm made on the LOOCV
method which determines an optimal value for the shape parameter by minimizing a cost function. The cost function

is defined by getting the norm of error vector e = (e1, e2, . . . , eN )
T

in which

ek=fk−W(k) (xk) , k=1, 2, . . . , N,

and W(k) is the approximate function to a decreased data set obtained by deleting the point xk from the data set as
follows:

W(k) (x) =

N∑
i=1,i6=k

c
(k)
i ϕ(‖x− xi‖).

The unknown vector

c(k) = (c
(k)
1 , . . . , c

(k)
k−1, c

(k)
k+1, . . . , c

(k)
N )

T
,

is resulted by employing the interpolation conditions

W(k) (xi) = fi, i = 1, 2, . . . , N, i 6= k,

which is corresponding to solve the nonsingular linear system A(k)c(k) = f (k), where

f (k) = (f
(k)
1 , . . . , f

(k)
k−1, f

(k)
k+1, . . . , f

(k)
N )

T
,

and A(k) is a submatrix of the matrix A by deleting the kth row and column. This algorithm is costly and requires
O(N4) computational operations. Rippa decreased its computational operations to O(N3). He attained a simple
formula for the error term as follows:

ek =
ck

A−1kk

, (2.4)

where ck is the kth coefficient of the vector c of the RBF interpolation on full data set, and A−1kk is kth diagonal
element of the inverse matrix obtained in the interpolation. Rippa used Brent’s method to derive the minimum of
‖e‖.

2.3. Approximate Moving Least Squares Method. The approximate moving least squares (AMLS) method is
an approximation technique that avoids solving the system of linear equations [10, 26]. In [14], Fasshauer and Zhang
proposed a sequence of AMLS method which starts with a quasi-interpolant of the form

ψ
(0)
f (x) =

N∑
i=1

f(xi)ϕ (‖x− xi‖) ,
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then, continues with the iteration on residuals as follows:

ψ
(n)
f (x) = ψ

(n−1)
f (x) +

N∑
i=1

[
f(xi)− ψ(n−1)

f (xj)
]
ϕ (‖x− xi‖) ,

where f(xi) = fi, i = 1, . . . , N are the given data values and the function ϕ is strictly positive definite and satisfies
continuous moment conditions. The Laguerre-Gaussians in the following form have the conditions listed

ϕ(r) =
1√
πd
e−r

2

Ld/2
n

(
r2
)
, r = ‖x‖ ;x ∈ Rd,

in which L
d/2
n (·) are Laguerre polynomials of degree n and order d/2.

Theorem 2.1. Let ϕ be a strictly positive definite function and generates an interpolation matrix A and

max
i=1,2,...,N


N∑
j=1

|Bij |

 < 2,

so that the matrix B is a scaled version of A, i.e.,

Bij = εdϕ
( ε
h
‖xi − xj‖

)
.

Here h = 1/
(
N1/d− 1), then ψ

(n)
f converges to the RBF approximation as n→∞.

Proof. Complete explanations are given by [13, 14]. �

Using the above content, the following basis function can be used

ϕ(r) =
εd√
πd
e−ε

2r2/h2

. (2.5)

The formulation of this method is as follows:

A

n∑
i=0

(I−A)
i
f = ψ

(n)
f (·) , (2.6)

in which the matrix A is symmetric and positive definite (Aij = ϕ (‖xi − xj‖)), I is the identity matrix and f =

(f1, f2, . . . , fN )
T

. Eq. (2.6) is a linear system with the coefficient matrix A, the unknown vector
∑n

i=0 (I−A)
i
f and

right-hand side vector ψ
(n)
f (·), by multiplying both sides of it into[

n∑
i=0

(I−A)
i

]−1
A−1,

the following result will be obtained[
n∑

i=0

(I−A)
i

]−1[ n∑
i=0

(I−A)
i
f

]
= f . (2.7)

In accordance with the Neumann series
∑∞

i=0 (I−A)
i

= A−1, Eq. (2.7) is an estimation of the linear system (2.3)
of the RBF interpolation.

In [13], Fasshauer and Zhang used Eq. (2.7) to compute the error term (2.4) as follows:

ek =

[∑n
i=0 (I−A)

i
f
]
k[∑n

i=0 (I−A)
i
]
kk

, (2.8)



112 M.R. YAGHOUTI AND F. FARSHADMOGHADAM

where there is no the inverse matrix. Moreover, they defined some suitable recursion relations that decreased the
computational costs in (2.8). They assumed that V(0) = f , and utilized the recursive formula

V(n) = f + (I−A) V(n−1),

for gaining the unknown vector
∑n

i=0 (I−A)
i
f such that (V(n))k is the kth component of the numerator in (2.8).

Also, using the eigen-decomposition of the matrix, costly calculations of matrix powers in the denominator of (2.8)
decreased. They put

I−A = XΛX−1,

where Λ is a diagonal matrix of the eigenvalues and the columns of the matrix X are the eigenvectors of I − A.
Assuming M(0) = I, the denominator of (2.8) can be calculated by the following formula

M(n) = ΛM(n−1) + I. (2.9)

Consequently, the following relation is satisfied for each n[
n∑

i=0

(I−A)
i

]
= XM(n)X−1. (2.10)

In Eq. (2.9), the matrix M(n) is diagonal, so the diagonal elements in (2.10) are computed without the matrix-matrix
multiplication. Fasshauer and Zhang used the Matlab function fminbnd to get the minimum of ‖e‖ in order to find
the optimal shape parameter, also the number of iterations is specified.

2.4. Leave-Two-Out Cross Validation Method. In [2], Azarboni et al. used Rippa’s results and algorithms
introduced by Fasshauer and Zhang, and stated an algorithm made on the LTOCV method by minimizing the cost
function which is done by getting the `2 norm of the error matrix E with entries ekl = ‖Ekl‖2, such that

Ekl =

[
fk −W(k,l) (xk)
fl −W(k,l) (xl)

]
, k = 1, . . . , N − 1, l = k + 1, . . . , N, (2.11)

and W(k,l) is the approximate function to a decreased data set obtained by deleting the points xk and xl as follows:

W(k,l) (x) =

N∑
i=1,i6=k,l

c
(k,l)
i ϕ(‖x− xi‖).

The unknown vector

c(k,l) = (c
(k,l)
1 , . . . , c

(k,l)
k−1 , c

(k,l)
k+1 , . . . , c

(k,l)
l−1 , c

(k,l)
l+1 , . . . , c

(k,l)
N )

T
,

is determined by applying the interpolation conditions

W(k,l) (xi) = fi, i = 1, 2, . . . , N, i 6= k, l,

which is corresponding to solve the nonsingular linear system of equations

A(k,l)c(k,l) = f (k,l),

where

f (k,l) = (f
(k,l)
1 , . . . , f

(k,l)
k−1 , f

(k,l)
k+1 , . . . , f

(k,l)
l−1 , f

(k,l)
l+1 , . . . , f

(k,l)
N )

T
,

and A(k,l) is a submatrix of the matrix A by deleting kth and lth rows and columns. They presented a formula for
Ekl (2.11), minimized the cost function by using the Matlab function fminbnd and obtained an optimal value of ε.

3. Some New Approximation Methods

In this section, firstly, we propose an iterative LTOCV algorithm by the iterative AMLS method, then, we present
Leave-P-Out Cross Validation method and explain it for P = 3, finally, express an iterative Leave-Three-Out Cross
Validation algorithm by the iterative AMLS method.
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3.1. Iterative LTOCV (ItLTOCV) for iterative AMLS Method. In [2], Azarboni et al. introduced a direct
LTOCV method and then used the results of Fasshauer and Zhang. Since the AMLS method avoids solving the system
of linear equations, one can consider a straight execution from it for the LTOCV method. In the following, we propose
the iterative LTOCV (ItLTOCV) algorithm for the iterative AMLS method, in the form of Algorithm 1.

Algorithm 1

Fix ε
for n = 1, 2, ... do

for k = 1, 2, ..., N − 1 do
for l = k + 1, . . . , N do

Let

ψ
(0)(k,l)
f (x) =

N−2∑
j=1

f
(k,l)
j ϕ

(∥∥∥x− x(k,l)j

∥∥∥)
for j = 1, 2, ..., N − 2 do

Compute residuals at the datasites

r
(n)(k,l)
j = f

(k,l)
j − ψ(n−1)(k,l)

f

(
x
(k,l)
j

)
end for
Compute the correction

u (x) =

N−2∑
j=1

r
(n)(k,l)
j ϕ

(∥∥∥x− x(k,l)j

∥∥∥)
Update

ψ
(n)(k,l)
f (x) = ψ

(n−1)(k,l)
f (x) + u(x) (3.1)

Compute the error estimate for the kth and lth data points

E
(n)(k,l)
kl =

[
f (xk)− ψ(n)(k,l)

f (xk)

f (xl)− ψ(n)(k,l)
f (xl)

]

e
(n)(k,l)
kl is the `2 norm of E

(n)(k,l)
kl .

end for
From the cost matrix E(n) = (e

(n)(k,l)
kl )

k<l

ceps (n) = norm(E(n), 2)

if (ceps (n)− ceps (n− 1)) < tol then
Stop the iteration

end if
end for

end for

Algorithm 1 removes points xk and xl from data set such that k = 1, . . . , N − 1, and l = k+ 1, . . . , N, then applies
the iterative AMLS method to this set of new data points until the stopping criterion is satisfied. Since this method
converges to the RBF approximation, so in Eq. (3.1) the RBF interpolation is derived by the removal of two points.
The cost function “ceps(n)” (See Program 1) is determined by getting the `2 norm of the upper triangular matrix
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E(n), with zero diagonal elements and entries e
(n)(k,l)
kl =

∥∥∥E(n)(k,l)
kl

∥∥∥
2
, such that

E
(n)(k,l)
kl =

[
f (xk)− ψ(n)(k,l)

f (xk)

f (xl)− ψ(n)(k,l)
f (xl)

]
.

To speed up the computational operation we use the eigen-decomposition for the interpolation matrix, and the residual
value is calculated for all points as follows:

f (xj)− ψ(n)(k,l)
f (xj) , j = 1, . . . , N.

Then, the Matlab function fminbnd minimizes the cost function in the following form

ep=fminbnd (@( ep1 )CostEpsItLTOCV( ep1 , phi ,T, f ,m) , minep , maxep)

here, phi is a radial basis function, the matrix T = (tij) is in the form of tij = ‖xi − xj‖ and (minep, maxep) is the
desired interval for determining the optimal shape parameter.
Finally, an optimal value of ε is obtained and n as the number of iterations is achieved. All Programs in this study
are listed in the appendix.

3.2. Leave-P-Out Cross Validation Method. In this subsection, we present a generalized formula to obtain
the error term by removing P data from the data set, this method called Leave-P-Out Cross Validation (LPOCV)
method. Let x = {xi;xi ∈ Rd, i = 1, 2, . . . , N} be the data set and W (x) be the RBF approximation centering on x
to interpolate the given values f(xi) = fi, i = 1, 2, . . . , N, like (2.1). Now, we define a new data set

x(k1,k2,...,kP ) =(x1, . . . , xk1−1, xk1+1, . . . , xk2−1, xk2+1, . . . , xkP−1, xkP+1, . . . , xN ),

as a vector of x such that the points xk1
, xk2

, . . . , xkP
, are removed, also k1 < k2 < · · · < kP , and k1 = 1, . . . , N−(P−1),

. . . , kP = kP−1 + 1, . . . , N, likewise, f (k1,k2,...,kP ) is the subvector of the data vector f = (f1, f2, . . . , fN )
T

, such that
the elements fk1

, fk2
, . . . , fkP

are removed. The interpolation function on the new data set is as follows:

W(k1,k2,...,kP ) (x) =

N∑
i=1,

i 6=k1,k2,...,kP

c
(k1,k2,...,kP )
i ϕ(‖x− xi‖).

The unknown vector

c(k1,k2,...,kP ) = (c1, . . . ,ck1−1, ck1+1, . . . ,ck2−1, ck2+1, . . ., ckP−1, ckP+1, . . . ,cN ) ,

is specified by enforcing the interpolation conditions

W(k1,k2,...,kP ) (xi) = fi, i = 1, 2, . . . , N, i 6= k1, k2, . . . , kP ,

which is corresponding to solve the nonsingular linear system of equations

A(k1,k2,...,kP )c(k1,k2,...,kP ) = f (k1,k2,...,kP ),

where A(k1,k2,...,kP ) is a submatrix of the matrix A by deleting kth1 , k
th
2 , . . . , k

th
P rows and columns.

Definition 3.1. Assume that y, z ∈ RN and Ay = z. If yk1 = yk2 = · · · = ykP
= 0, then

A(k1,k2,...,kP )(y(k1,k2,...,kP ))
T

= (z(k1,k2,...,kP ))
T
.

Lemma 3.2. Suppose that x[k] be the solution of the system

Ax[k] = e[k],

where e[k] is the kth column of the N ×N identity matrix, then x
[k]
k 6= 0.

Proof. The proof is straightforward in [29]. �
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Theorem 3.3. Let B be a P × P matrix with entries Bij = x
[kj ]
ki

which are defined with the help of Lemma 3.2 and

i, j = 1, . . . , P, such that k1 < k2 < · · · < kP , k1 = 1, . . . , N − (P − 1), . . . , kP = kP−1 + 1, . . . , N, and |B| 6= 0,

(|B| is the determinants of the matrix B). Also, the cofficient vector c = (c1, c2, . . . , cN )
T

is obtained by solving the
linear system of equations of the RBF interpolation on full data set, and the constants yki , are defined by

yki =

∣∣∣∣∣∣∣∣∣∣
x
[k1]
k1

. . . ck1
. . . x

[kP ]
k1

x
[k1]
k2

. . . ck2
. . . x

[kP ]
k2

... . . .
... . . .

...

x
[k1]
kP

. . . ckP
. . . x

[kP ]
kP

∣∣∣∣∣∣∣∣∣∣
|B|

, i = 1, . . . , P, (3.2)

the numerator in (3.2) is determined by replacing the kthi column of the matrix B with the subvector of the cofficient
vector c. Then, the error vector Ek1k2...kP

in the LPOCV method is given by

Ek1k2...kP
=


fk1
−W(k1,k2,...,kP ) (xk1

)
fk2−W(k1,k2,...,kP ) (xk2)

...
fkP
−W(k1,k2,...,kP ) (xkP

)

=


yk1

yk2

...
ykP

 .

Proof. Let us consider b[k1,k2,...,kP ] ∈ RN as follows:

b[k1,k2,...,kP ]=c−yk1x
[k1] − yk2x

[k2] − · · · − ykP
x[kP ], (3.3)

then we multiply the matrix A on both sides of Eq. (3.3)

Ab[k1,k2,...,kP ]=Ac−yk1Ax
[k1] − yk2Ax

[k2] − · · · − ykP
Ax[kP ].

Now by applying Lemma 3.2 we have

Ab[k1,k2,...,kP ] =f − yk1
e[k1] − yk2

e[k2] − · · · − ykP
e[kP ]

=(f1, . . . , fk1−1, fk1
− yk1

, fk1+1, . . . , fk2−1, fk2
− yk2

, fk2+1, . . . , fkP−1, fkP
− ykP

, fkP+1, . . . , fN ),
(3.4)

given that

b
[k1,k2,...,kP ]
k1

= b
[k1,k2,...,kP ]
k2

= · · · = b
[k1,k2,...,kP ]
kP

= 0,

Definition 3.1 and relation (3.4) give

A(k1,k2,...,kP )b(k1,k2,...,kP ) = f (k1,k2,...,kP ),

as a result

c(k1,k2,...,kP ) = b(k1,k2,...,kP ),
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thus 
W(k1,k2,...,kP ) (xk1

)
W(k1,k2,...,kP ) (xk2

)
...

W(k1,k2,...,kP ) (xkP
)

 =


∑N

i=1,i6=k1,k2,...,kP
c
(k1,k2,...,kP )
i ϕ(‖xk1

− xi‖)∑N
i=1,i6=k1,k2,...,kP

c
(k1,k2,...,kP )
i ϕ(‖xk2

− xi‖)
...∑N

i=1,i6=k1,k2,...,kP
c
(k1,k2,...,kP )
i ϕ(‖xkP

− xi‖)



=


∑N

i=1,i6=k1,k2,...,kP
b
(k1,k2,...,kP )
i ϕ(‖xk1

− xi‖)∑N
i=1,i6=k1,k2,...,kP

b
(k1,k2,...,kP )
i ϕ(‖xk2 − xi‖)

...∑N
i=1,i6=k1,k2,...,kP

b
(k1,k2,...,kP )
i ϕ(‖xkP

− xi‖)



=


∑N

i=1 b
(k1,k2,...,kP )
i ϕ(‖xk1

− xi‖)∑N
i=1 b

(k1,k2,...,kP )
i ϕ(‖xk2

− xi‖)
...∑N

i=1 b
(k1,k2,...,kP )
i ϕ(‖xkP

− xi‖)



=


(Ab[k1,k2,...,kP ])k1

(Ab[k1,k2,...,kP ])k2

...
(Ab[k1,k2,...,kP ])kP

 =


fk1
− yk1

fk2 − yk2

...
fkP
− ykP

 .
Finally, the error vector Ek1k2...kP

is as follows:

Ek1k2...kP
=


fk1−W(k1,k2,...,kP ) (xk1)
fk2
−W(k1,k2,...,kP ) (xk2

)
...

fkP
−W(k1,k2,...,kP ) (xkP

)

=


yk1

yk2

...
ykP

 .
�

The cost function is defined by taking the `2 norm of P-dimensional error matrix E with entries ek1k2...kP
that are

the `2 norm of Ek1k2...kP
. Then, the Matlab function fminbnd minimizes the cost function and an optimal value of ε

is obtained, also the number of iterations is achieved.
To clarify Theorem 3.3, we consider different values for P , (P = 1, 2, 3).

By applying Theorem 3.3 for P = 1, we obtain

B1×1 = x
[k]
k , yk =

ck

x
[k]
k

, k = 1, . . . , N,

and

Ek = fk −W(k)(xk) = yk, k = 1, . . . , N.

These are equivalent to results obtained by Rippa’s [29].
Also, for P = 2, we derive

B2×2 =

[
x
[k]
k x

[l]
k

x
[k]
l x

[l]
l

]
, k = 1, . . . , N − 1, l = k + 1, . . . , N,
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and

yk =

∣∣∣∣∣ck x
[l]
k

cl x
[l]
l

∣∣∣∣∣
|B|

, yl =

∣∣∣∣∣x[k]k ck

x
[k]
l cl

∣∣∣∣∣
|B|

.

Then

Ekl =

[
fk −W(k,l) (xk)

fl −W(k,l) (xl)

]
=

[
yk
yl

]
, k = 1, . . . , N − 1, l = k + 1, . . . , N.

These are equivalent to results obtained by Azarboni et al. [2].
Now, we put P = 3, and present a new method that is called Leave-Three-Out Cross Validation (LThOCV) method.

We have

B3×3 =

x
[k]
k x

[l]
k x

[r]
k

x
[k]
l x

[l]
l x

[r]
l

x
[k]
r x

[l]
r x

[r]
r

 ,
such that k < l < r, k = 1, . . . , N − 2, l = k + 1, . . . , N − 1, r = l + 1, . . . , N . And

y1 =

∣∣∣∣∣∣∣
ck x

[l]
k x

[r]
k

cl x
[l]
l x

[r]
l

cr x
[l]
r x

[r]
r

∣∣∣∣∣∣∣
|B|

, y2 =

∣∣∣∣∣∣∣
x
[k]
k ck x

[r]
k

x
[k]
l cl x

[r]
l

x
[k]
r cr x

[r]
r

∣∣∣∣∣∣∣
|B|

, y3 =

∣∣∣∣∣∣∣
x
[k]
k x

[l]
k ck

x
[k]
l x

[l]
l cl

x
[k]
r x

[l]
r cr

∣∣∣∣∣∣∣
|B|

.

Using the AMLS method and the relation between Eqs. (2.4) and (2.8), |B|, y1, y2 and y3 are defined by

|B| =

[
n∑

i=0

(I−A)i
]
kk

[
n∑

i=0

(I−A)i
]
lr

[
n∑

i=0

(I−A)i
]
rl

−

[
n∑

i=0

(I−A)i
]
kl

[
n∑

i=0

(I−A)i
]
lr

[
n∑

i=0

(I−A)i
]
rk

−

[
n∑

i=0

(I−A)i
]
kk

[
n∑

i=0

(I−A)i
]
ll

[
n∑

i=0

(I−A)i
]
rr

+

[
n∑

i=0

(I−A)i
]
kl

[
n∑

i=0

(I−A)i
]
lk

[
n∑

i=0

(I−A)i
]
rr

−

[
n∑

i=0

(I−A)i
]
lk

[
n∑

i=0

(I−A)i
]
kr

[
n∑

i=0

(I−A)i
]
rl

+

[
n∑

i=0

(I−A)i
]
ll

[
n∑

i=0

(I−A)i
]
kr

[
n∑

i=0

(I−A)i
]
rk

,

y1 =
−
[∑n

i=0 (I−A)i
]
kl

[∑n
i=0 (I−A)i

]
lr

[∑n
i=0 (I−A)if

]
r

|B| +

[∑n
i=0 (I−A)i

]
ll

[∑n
i=0 (I−A)i

]
kr

[∑n
i=0 (I−A)if

]
r

|B|

+

[∑n
i=0 (I−A)i

]
lr

[∑n
i=0 (I−A)i

]
rl

[∑n
i=0 (I−A)if

]
k

|B| +

[∑n
i=0 (I−A)i

]
kl

[∑n
i=0 (I−A)i

]
rr

[∑n
i=0 (I−A)if

]
l

|B|

−

[∑n
i=0 (I−A)i

]
kr

[∑n
i=0 (I−A)i

]
rl

[∑n
i=0 (I−A)if

]
l

|B| −

[∑n
i=0 (I−A)i

]
ll

[∑n
i=0 (I−A)i

]
rr

[∑n
i=0 (I−A)if

]
k

|B| ,

y2 =

[∑n
i=0 (I−A)i

]
kk

[∑n
i=0 (I−A)i

]
lr

[∑n
i=0 (I−A)if

]
r

|B| −

[∑n
i=0 (I−A)i

]
lk

[∑n
i=0 (I−A)i

]
kr

[∑n
i=0 (I−A)if

]
r

|B|

−

[∑n
i=0 (I−A)i

]
lr

[∑n
i=0 (I−A)i

]
rk

[∑n
i=0 (I−A)if

]
k

|B| −

[∑n
i=0 (I−A)i

]
kk

[∑n
i=0 (I−A)i

]
rr

[∑n
i=0 (I−A)if

]
l

|B|

+

[∑n
i=0 (I−A)i

]
kr

[∑n
i=0 (I−A)i

]
rk

[∑n
i=0 (I−A)if

]
l

|B| +

[∑n
i=0 (I−A)i

]
lk

[∑n
i=0 (I−A)i

]
rr

[∑n
i=0 (I−A)if

]
k

|B| ,
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and

y3 =
−
[∑n

i=0 (I−A)i
]
kk

[∑n
i=0 (I−A)i

]
ll

[∑n
i=0 (I−A)if

]
r

|B| +

[∑n
i=0 (I−A)i

]
kl

[∑n
i=0 (I−A)i

]
lk

[∑n
i=0 (I−A)if

]
r

|B|

+

[∑n
i=0 (I−A)i

]
kk

[∑n
i=0 (I−A)i

]
rl

[∑n
i=0 (I−A)if

]
l

|B| −

[∑n
i=0 (I−A)i

]
kl

[∑n
i=0 (I−A)i

]
rk

[∑n
i=0 (I−A)if

]
l

|B|

−

[∑n
i=0 (I−A)i

]
lk

[∑n
i=0 (I−A)i

]
rl

[∑n
i=0 (I−A)if

]
k

|B| +

[∑n
i=0 (I−A)i

]
ll

[∑n
i=0 (I−A)i

]
rk

[∑n
i=0 (I−A)if

]
k

|B| .

Then, the error vector Eklr in the LThOCV method is given by

Eklr=

 fk −W(k,l,r) (xk)
fl −W(k,l,r) (xl)
fr −W(k,l,r) (xr)

=

 y1
y2
y3

 .
The basis of the LThOCV method is based on Algorithm 2.

Algorithm 2

Fix ε. Perform an eigen-decomposition

I−A = XΛX−1

Initialize V(0) = f and M(0) = I
for n = 1, 2, ... do

Perform the updates

V(n) =f + (I−A) V(n−1)

M(n) =ΛM(n−1) + I

Compute the vector E
(n)
klr as the componentwise quotient

of V(n) and the diagonal of XM(n)X−1

e
(n)
klr is the `2 norm of E

(n)
klr

From the 3-dimensional cost matrix E(n) = (e
(n)
klr)

k<l<r
ceps (n) = norm(E(n), 2)

if (ceps (n)− ceps (n− 1)) < tol then
Stop the iteration

end if
end for

To speed up the computational operation we use the eigen-decomposition for the matrix I−A. By using Algorithm
2 the cost function “ceps(n)” is defined (See Program 2). Utilizing the Matlab function fminbnd this cost function is
minimized, and an optimal value of ε is specified, also the number of iterations is obtained.

3.3. Iterative LThOCV (ItLThOCV) for iterative AMLS Method. In this subsection, we declare an iterative
LThOCV (ItLThOCV) algorithm for the iterative AMLS method as Algorithm 3.

For this approach, we remove three points xk, xl and xr from the data set such that k = 1, . . . , N − 2, l =
k + 1, . . . , N − 1, and r = l + 1, . . . , N, then, use the iterative AMLS method to this set of new data points until
the stopping criterion is satisfied. In Eq. (3.5), an RBF interpolation is obtained by deleting three points. The cost
function “ceps(n)” (See Program 3) is defined by getting the `2 norm of the 3-dimensional error matrix E(n) with
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Algorithm 3

Fix ε
for n = 1, 2, ... do

for k = 1, 2, ..., N − 2 do
for l = k + 1, . . . , N − 1 do

for r = l + 1, . . . , N do
Let

ψ
(0)(k,l,r)
f (x) =

N−3∑
j=1

f
(k,r,l)
j ϕ

(∥∥∥x− x(k,l,r)j

∥∥∥)
for j = 1, 2, ..., N − 3 do

Compute residuals at the datasites

r
(n)(k,l,r)
j = f

(k,l,r)
j − ψ(n−1)(k,l,r)

f

(
x
(k,l,r)
j

)
end for
Compute the correction

u (x) =

N−3∑
j=1

r
(n)(k,l,r)
j ϕ

(∥∥∥x− x(k,l,r)j

∥∥∥)
Update

ψ
(n)(k,l,r)
f (x) = ψ

(n−1)(k,l,r)
f (x) + u(x) (3.5)

Compute the error estimate for the kth , lth and rth data points

E
(n)(k,l,r)
klr =

 f (xk)− ψ(n)(k,l,r)
f (xk)

f (xl)− ψ(n)(k,l,r)
f (xl)

f (xr)− ψ(n)(k,l,r)
f (xr)


e
(n)(k,l,r)
klr is the `2 norm of E

(n)(k,l,r)
klr

end for
From the 3-dimensional cost matrix E(n) = (e

(n)(k,l,r)
klr )

k<l<r
ceps (n) = norm(E(n), 2)

if (ceps (n)− ceps (n− 1)) < tol then
Stop the iteration

end if
end for

end for
end for

entries e
(n)(k,l,r)
klr =

∥∥∥E(n)(k,l,r)
klr

∥∥∥
2

in which

E
(n)(k,l,r)
klr =

 f (xk)− ψ(n)(k,l,r)
f (xk)

f (xl)− ψ(n)(k,l,r)
f (xl)

f (xr)− ψ(n)(k,l,r)
f (xr)

 .
In order to expedite up the computational operation we use the eigen-decomposition for the interpolation matrix,

and the residual value is calculated for all points as follows:

f (xj)− ψ(n)(k,l,r)
f (xj) , j = 1, . . . , N.
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Applying the Matlab function fminbnd the cost function is minimized, and an optimal value of ε is specified, also
the number of iterations is achieved.

4. Numerical Experiments

In this section, three examples are tested to assess the performance of present methods. First, these methods are
used for interpolating two test functions and then, a partial differential problem is solved. We consider a uniform data
set from size N in two dimensions, and examine the accuracy of present methods by applying the absolute error,
namely e(x), and the Root-Mean-Square-Error (RMSE) overall N data points as follows:

e(xi) = |F (xi)−W(xi)| , i = 1, . . . , N, (4.1)

RMSE (ε) =

√∑N
i=1 e

2(xi)

N
, (4.2)

where W is the RBF approximation and F is the exact solution. All of the numerical computations are performed in
MATLAB R2018b, on a PC with an Intel(R) Core(TM) i5-7500, CPU 3.40GHz, 8GB(RAM).

Example 1. [12–14] Let us consider a modified Franke function on the unit square as follows:

g(x, y) =0.75 exp(− (9x− 2)2 + (9y − 2)2

4
) + 0.75 exp(− (9x+ 1)2

49
− 9y + 1

10
)

+0.5 exp(− (9x− 7)2 + (9y − 3)2

4
)− 0.2 exp(−(9x− 4)2 − (9y − 7)2),

f(x, y) = 15g(x, y) exp(− 1

1− (2x− 1)2
) exp(− 1

1− (2y − 1)2
).

Numerical results in Table 2 show the RMSE values, the optimal shape parameter ε, the number of repetitions
required for the AMLS method and CPU time for various values of N . The RMSE rate is reduced by increasing N
for each method. We use the radial basis function in the form of (2.5). Figure 1 presents the approximate and exact
solutions along with the absolute error with N = 49 and ε = 0.8195. Figure 2 displays the RMSE as a function of
ε ∈ [0.5, 3] for N = 49, where the optimal shape parameter is ε = 0.9167 and the RMSE is 2.441e− 18. Furthermore,
in [13], the RMSE for N = 1089 of the AMLS direct LOOCV method is 2.48e − 4, of the AMLS iterative LOOCV
method is 2.30e− 4, of the Shepard direct LOOCV method is 2.73e− 4, of the Shepard iterative LOOCV method is
2.77e − 4 and of the Ridge method is 2.50e − 4. Numerical results show that our methods have very high accuracy
with a small number of data points compared to the methods mentioned in [13].

Table 2. Numerical results of present methods for Example 1.

Present methods N = 25 N = 36 N = 49

ItLTOCV

RMSE 1.7471e− 16 1.0781e− 16 8.7223e− 17
ε 0.9431 0.8691 0.8279
no. iter. 3 3 3
CPU time (s) 0.11 0.15 0.17

LThOCV

RMSE 9.8805e− 17 9.6940e− 17 9.1295e− 17
ε 0.9713 0.9009 0.8585
no. iter. 3 3 3
CPU time (s) 0.18 0.44 0.58

ItLThOCV

RMSE 2.4289e− 16 7.6638e− 17 7.0324e− 17
ε 0.9232 0.8589 0.8195
no. iter. 3 3 3
CPU time (s) 0.31 0.58 3.09

Example 2. [2] In this example, we consider peaks function in Matlab.
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Figure 1. Approximate (left) and exact (middle) solutions along with the absolute error (right)
with N = 49 and ε = 0.8195 for Example 1.
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Figure 2. RMSE as a function of ε with N = 49 on a linear− log scale for Example 1.

Numerical results in Table 3 have a similar trend with Table 2. We use the radial basis function in the form of (2.5).
Figure 3 portrays the approximate and exact solutions along with the absolute error with N = 49 and ε = 0.1529.
Figure 4 demonstrates the RMSE as a function of ε ∈ [0.001, 1] for N = 49, where the optimal shape parameter is
ε = 0.8335 and the RMSE is 9.713e− 17. Moreover, in [2], the RMSE for N = 400 of the LOOCV method is 1.1e− 5
and of the LTOCV method is 1e− 7. Numerical results show that our methods have very high accuracy with a small
number of data points compared to the methods mentioned in [2].
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Figure 3. Approximate (left) and exact (middle) solutions along with the absolute error (right)
with N = 49 and ε = 0.1529 for Example 2.
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Figure 4. RMSE as a function of ε with N = 49 on a linear− log scale for Example 2.

Table 3. Numerical results of present methods for Example 2.

Present methods N = 25 N = 36 N = 49

ItLTOCV

RMSE 8.8350e− 16 7.4998e− 16 4.3312e− 16
ε 0.1744 0.1601 0.1514
no. iter. 3 3 3
CPU time (s) 0.13 0.16 0.19

LThOCV

RMSE 1.1077e− 15 6.3897e− 16 5.2103e− 16
ε 0.1774 0.1636 0.1532
no. iter. 3 3 3
CPU time (s) 0.25 0.35 0.85

ItLThOCV

RMSE 5.2799e− 16 4.2763e− 16 4.2006e− 16
ε 0.1772 0.1631 0.1529
no. iter. 3 3 3
CPU time (s) 0.41 0.57 3.47

Example 3. [2] Let us consider Poisson equation:
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−uxx − uyy = π2sin (πx) sin (πy) ; −1 ≤ x, y ≤ 1,

with boundary conditions

u(x,−1) = 1− 2x; −1 ≤ x ≤ 1,

u(x, 1) = 1; −1 ≤ x ≤ 1,

u(−1, y) = 2− y; −1 ≤ y ≤ 1,

u(1, y) = y; −1 ≤ y ≤ 1.

The exact solution is:

u (x, y) = 1− x+ xy +
1

2
sin (πx) sin (πy) ; − 1 < x, y < 1.

Numerical results in Table 4 have a similar trend with Table 2. We use the Guassian radial basis function ϕ (r) =

e−ε
2r2 . Figure 5 indicates the approximate and exact solutions along with the absolute error with N = 100 and

ε = 0.6001. Figure 6 illustrates RMSE as a function of ε ∈ [0.6, 1.4] for N = 100, where the optimal shape parameter
is ε = 0.6889 and the RMSE is 8.587e − 06. Moreover, in [2], the RMSE for N = 400 of the LOOCV method is
2.1e− 5 and of the LTOCV method is 3.8178e− 6. Numerical results show that our methods are more accurate with
a small number of data points compared to the methods mentioned in [2]. Note that the coefficient matrix of partial
differential equations is non-symmetric, but present methods are still quite efficient using strictly positive definite
RBFs, even if they are not theoretically guaranteed.

Table 4. Numerical results of present methods for Example 3.

Present methods N = 49 N = 81 N = 100

ItLTOCV

RMSE 3.2192e− 04 3.2138e− 05 3.7530e− 06
ε 0.6001 0.6001 0.6001
no. iter. 3 3 3
CPU time (s) 1.04 3.50 6.57

LThOCV

RMSE 4.4358e− 03 5.2021e− 04 6.6675e− 05
ε 1.0021 0.9777 0.8781
no. iter. 5 4 4
CPU time (s) 5.10 26.27 38.64

ItLThOCV

RMSE 3.2192e− 04 3.2138e− 05 3.7530e− 06
ε 0.6001 0.6001 0.6001
no. iter. 3 3 3
CPU time (s) 15.77 104.16 305.0391

5. Conclusion

In this paper, we introduced three numerical schemes to select the optimal shape parameter for the RBF method.
These are based on Rippa’s theory to remove data points from the data set, and results obtained by Fasshauer and
Zhang for the iterative AMLS method. First, we proposed the ItLTOCV algorithm for the iterative AMLS method.
Then, we defined a generalized formula to obtain the error term by removing P data from the data set, this method
called the LPOCV method and used it for P = 3. Finally, we presented the ItLThOCV algorithm for the iterative
AMLS method. Using the Tables, it can be said that with increasing N , the RMSE decreases for each method. Also,
the RMSE in our methods is less than the RMSE of other methods at low numbers of data points, but the computa-
tional time with the growth of deleted points is longer. All of the descriptions indicate the effectiveness of our methods.
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Figure 5. Approximate (left) and exact (middle) solutions along with the absolute error (right)
with N = 100 and ε = 0.6001 for Example 3.
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Figure 6. RMSE as a function of ε with N = 100 on a linear− log scale for Example 3.

Appendix: Programs in MATLAB

Program 1:

function ceps=CostEpsItLTOCV( ep1 , phi ,T, f ,m)

ep1 ;

A=phi ( ep1 ,T) ;

I=eye ( (m+1)ˆ2) ;

[ x1 , D1]=eig (A) ;

for j =1:(m+1)ˆ2

for k=1:(m+1)ˆ2

E( j , k)= f ( j ) ;

end
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end

e1=zeros ( (m+1)ˆ2) ;

ceps (1)=norm( e1 , 2 ) ;

e2=zeros ( (m+1)ˆ2) ;

n=2;

S1=x1\E;

for k =1:((m+1)ˆ2)−1

S=(I−D1)∗S1+(D1/x1 )∗ ( diag ( diag (E,−k) ,−k ) + . . .

diag ( diag (E ) ) ) ;

D=diag ( diag ( x1∗S,−k) ,−k)+diag ( diag ( x1∗S ) ) ;

for i =1:((m+1)ˆ2)−k

en ( i , i+k)=sqrt (D( i , i )ˆ2+D( i+k , i ) ˆ 2 ) ;

end

end

ceps (n)=norm( en , 2 ) ;

while ( ceps (n)−ceps (n−1))>1e−1

n=n+1;

S1=x1\E;

for k =1:((m+1)ˆ2)−1

S=(I−D1)∗S1+(D1/x1 )∗ ( diag ( diag (E,−k) ,−k ) + . . .

diag ( diag (E ) ) ) ;

D=diag ( diag ( x1∗S,−k) ,−k)+diag ( diag ( x1∗S ) ) ;

for i =1:((m+1)ˆ2)−k

en ( i , i+k)=sqrt (D( i , i )ˆ2+D( i+k , i ) ˆ 2 ) ;

end

end

ceps (n)=norm( en , 2 ) ;

end

n

ceps=ceps (n ) ;

end

Program 2:

function ceps=CostEpsLThOCV( ep1 , phi ,T, f ,m)

ep1 ;

A=phi ( ep1 ,T) ;

I=eye ( (m+1)ˆ2) ;

[ x1 ,D]=eig ( I−A) ;

T1=(x1 ∗(D/x1 ) ) ;

v=f ;

M=I ;

v=T1∗v+f ;

M=D∗M+I ;

T2=(x1 ∗(M/x1 ) ) ;
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ceps1=zeros ( (m+1)ˆ2 ,(m+1)ˆ2 ,(m+1)ˆ2);

ceps2=zeros ( (m+1)ˆ2 ,1) ;

ceps (1)=0;

n=2;

for p=1:((m+1)ˆ2−2)

for q=p+1:((m+1)ˆ2−1)

for u=q+1:(m+1)ˆ2

B=T2(p , p)∗T2(u , q )∗T2(q , u)−T2(q , p)∗T2(u , q )∗T2(p , u ) − . . .

T2(p , p)∗T2(q , q )∗T2(u , u)+T2(q , p)∗T2(p , q )∗T2(u , u ) − . . .

T2(p , q )∗T2(u , p)∗T2(q , u)+T2(q , q )∗T2(u , p)∗T2(p , u ) ;

i f (B==0)

ceps1=ceps1 ;

else

ce1=(−v (u)∗T2(q , p)∗T2(u , q)+v (u)∗T2(q , q )∗T2(u , p ) + . . .

v (p)∗T2(u , p)∗T2(q , u)+v ( q )∗T2(q , p)∗T2(u , u ) − . . .

v ( q )∗T2(u , p)∗T2(q , u)−v (p)∗T2(q , q )∗T2(u , u ) )/B;

ce2=(v (u)∗T2(p , p)∗T2(u , q)−v (u)∗T2(p , q )∗T2(u , p ) − . . .

v (p)∗T2(u , q )∗T2(p , u)−v ( q )∗T2(p , p)∗T2(u , u ) + . . .

v ( q )∗T2(u , p)∗T2(p , u)+v (p)∗T2(p , q )∗T2(u , u ) )/B;

ce3=(−v (u)∗T2(p , p)∗T2(q , q)+v (u)∗T2(q , p)∗T2(p , q ) + . . .

v ( q )∗T2(p , p)∗T2(q , u)−v ( q )∗T2(q , p)∗T2(p , u ) − . . .

v (p)∗T2(p , q )∗T2(q , u)+v (p)∗T2(q , q )∗T2(p , u ) )/B;

ceps1 (p , q , u)=sqrt ( ( ce1 )ˆ2+( ce2 )ˆ2+( ce3 ) ˆ 2 ) ;

end

end

end

ceps2 (p+2,1)=norm( ceps1 ( : , : , p +2) ,2) ;

end

ceps (n)=norm( ceps2 , 2 ) ;

while ( ceps (n)−ceps (n−1))>1e−1

n=n+1;

v=T1∗v+f ;

M=D∗M+I ;

T2=(x1 ∗(M/x1 ) ) ;

for p=1:((m+1)ˆ2−2)

for q=p+1:((m+1)ˆ2−1)

for u=q+1:(m+1)ˆ2

B=T2(p , p)∗T2(u , q )∗T2(q , u)−T2(q , p)∗T2(u , q )∗T2(p , u ) − . . .

T2(p , p)∗T2(q , q )∗T2(u , u)+T2(q , p)∗T2(p , q )∗T2(u , u ) − . . .

T2(p , q )∗T2(u , p)∗T2(q , u)+T2(q , q )∗T2(u , p)∗T2(p , u ) ;

i f (B==0)

ceps1=ceps1 ;

else

ce1=(−v (u)∗T2(q , p)∗T2(u , q)+v (u)∗T2(q , q )∗T2(u , p ) + . . .

v (p)∗T2(u , p)∗T2(q , u)+v ( q )∗T2(q , p)∗T2(u , u ) − . . .

v ( q )∗T2(u , p)∗T2(q , u)−v (p)∗T2(q , q )∗T2(u , u ) )/B;
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ce2=(v (u)∗T2(p , p)∗T2(u , q)−v (u)∗T2(p , q )∗T2(u , p ) − . . .

v (p)∗T2(u , q )∗T2(p , u)−v ( q )∗T2(p , p)∗T2(u , u ) + . . .

v ( q )∗T2(u , p)∗T2(p , u)+v (p)∗T2(p , q )∗T2(u , u ) )/B;

ce3=(−v (u)∗T2(p , p)∗T2(q , q)+v (u)∗T2(q , p)∗T2(p , q ) + . . .

v ( q )∗T2(p , p)∗T2(q , u)−v ( q )∗T2(q , p)∗T2(p , u ) − . . .

v (p)∗T2(p , q )∗T2(q , u)+v (p)∗T2(q , q )∗T2(p , u ) )/B;

ceps1 (p , q , u)=sqrt ( ( ce1 )ˆ2+( ce2 )ˆ2+( ce3 ) ˆ 2 ) ;

end

end

end

ceps2 (p+2,1)=norm( ceps1 ( : , : , p +2) ,2) ;

end

ceps (n)=norm( ceps2 , 2 ) ;

end

n

ceps=ceps (n ) ;

end

Program 3:

function ceps=CostEpsItLThOCV( ep1 , phi ,T, f ,m)

ep1 ;

A=phi ( ep1 ,T) ;

I=eye ( (m+1)ˆ2) ;

[ x1 , D1]=eig (A) ;

for j =1:(m+1)ˆ2

for k=1:(m+1)ˆ2

E( j , k)= f ( j ) ;

end

end

e1=zeros ( (m+1)ˆ2 ,1) ;

ceps (1)=norm( e1 , 2 ) ;

e2=zeros ( (m+1)ˆ2 ,1) ;

n=2;

ee=zeros ( (m+1)ˆ2 ,(m+1)ˆ2 ,(m+1)ˆ2);

S1=x1\E;

for k =1:((m+1)ˆ2)−2

for r=k +1:((m+1)ˆ2)−1

S=(I−D1)∗S1+(D1/x1 )∗ ( diag ( diag (E,− r ) ,− r ) + . . .

diag ( diag (E,−k) ,−k)+diag ( diag (E ) ) ) ;

D=diag ( diag ( x1∗S,− r ) ,− r)+diag ( diag ( x1∗S,−k) ,−k ) + . . .

diag ( diag ( x1∗S ) ) ;

for i =1:((m+1)ˆ2)− r

ee ( i , i+k , i+r)=sqrt (D( i , i )ˆ2+D( i+k , i )ˆ2+D( i+r , i ) ˆ 2 ) ;

end
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end

en ( k+2,1)=norm( ee ( : , : , k +2) ,2) ;

end

ceps (n)=norm( en , 2 ) ;

while ( ceps (n)−ceps (n−1))>1e−1

n=n+1;

S1=x1\E;

for k =1:((m+1)ˆ2)−2

for r=k +1:((m+1)ˆ2)−1

S=(I−D1)∗S1+(D1/x1 )∗ ( diag ( diag (E,− r ) ,− r ) + . . .

diag ( diag (E,−k) ,−k)+diag ( diag (E ) ) ) ;

D=diag ( diag ( x1∗S,− r ) ,− r)+diag ( diag ( x1∗S,−k) ,−k ) + . . .

diag ( diag ( x1∗S ) ) ;

for i =1:((m+1)ˆ2)− r

ee ( i , i+k , i+r)=sqrt (D( i , i )ˆ2+D( i+k , i )ˆ2+D( i+r , i ) ˆ 2 ) ;

end

end

en ( k+2,1)=norm( ee ( : , : , k +2) ,2) ;

end

ceps (n)=norm( en , 2 ) ;

end

ceps=ceps (n ) ;

n

end
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