- [1]         O. P. Agrawal, Fractional optimal control of a distributed system using eigenfunctions, ASME. J. Comput. Non- linear Dyn, 3 (2008), 021204.
 
- [2]         F. A. Aliev, N .A. Aliev, M. M. Mutallimov, and A. A. Namazov, Algorithm for Solving the Identification Problem for Determining the Fractional-Order Derivative of an Oscillatory System, Applied and computational mathematics, 19(3) (2020), 415-422.
 
- [3]         B. Alkahtani, V. Gulati, A. Klman, Application of Sumudu transform in generalized fractional reaction–diffusion equation, Int. J. Appl. Comput. Math, 2 (2016), 387–394.
 
- [4]         D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional Calculus: Models and Numerical Methods, vol. 3 of Series on Complexity, Nonlinearity and Chaos, World Scientific Publishing, Boston, Mass, USA, 2012.
 
- [5]         F. B. M. Belgacem and A. A. Karaballi, Sumudu transform fundamental properties investigations and applications, Journal of Applied Mathematics and Stochastic Analysis, (2006), 1-23
 
- [6]         F. B. M. Belgacem, A. A. Karaballi, and S. L. Kalla, Analytical investigations of the Sumudu transform and applications to integral production equations, Mathematical Problems in Engineering, (2003), 103–118.
 
- [7]         R. Belgacem, A. Bokhari, and B. Sadaoui, Shehu Transform of Hilfer-Prabhakar Fractional Derivatives and Applications on some Cauchy Type Problems, Advances in the Theory of Nonlinear Analysis and its Applications, 5(2) (2021), 203-214.
 
- [8]         M. Caputo, Linear model of dissipation whose Q is almost frequency independent-II, Geophysical Journal of the Royal Astronomical Society, 13(1967), 529–539.
 
- [9]         M. Caputo and M. A. Fabrizio, New definition of fractional derivative without singular kernel, Progr Fract Differ Appl, 1(2015), 73–85.
 
- [10]       V. F. M. Delgado, J. F. G´omez-Aguilar, H. Y´epez-Mart ´ınez, D. Baleanu, R. F. Escobar-Jimenez, and V. H. Olivares-Peregrino, Laplace homotopy analysis method for solving linear partial differential equations using a fractional derivative with and without kernel singular, Advances in Difference Equations, 164 (2016), 1-17.
 
- [11]       M. H. Derakhshan, M. A. Darani, A. Ansari, and R. K. Ghaziani, On asymptotic stability of Prabhakar fractional differential systems, Computational methods for differential equations, 4(4) (2016), 276-284.
 
- [12]       M. A. El-Tawil and S. N. Huseen, On Convergence of q-Homotopy Analysis Method, Int. J. Contemp. Math. Sciences, 8 (2013), 481-497.
 
- [13]       A. Erdelyi, W. Magnus, F. Oberhettinger, and F.G. Tricomi, Higher Transcedential Functions, Vol. 3. McGraw- Hill, New York, 1955.
 
- [14]       R. Garra and R. Garrappa, The Prabhakar or three parameter Mittag–Leffler function: theory and application, Communications in Nonlinear Science and Numerical Simulation, 56 (2018), 314-329.
 
- [15]       R. Garra, R. Goreno, F. Polito, and Z. Tomovski, Hilfer-Prabhakar Derivative and Some Applications, Applied Mathematics and Computation, 242(2014), 576-589.
 
- [16]       V. Gu¨lkac, The homotopy perturbation method for the BlackScholes equation, J Stat Comput Simul, 80 (2010), 1349-1354.
 
- [17]       O. Guner and A. Bekir, Solving nonlinear space-time fractional differential equations via ansatz method, Compu- tational methods for differential equations, 6(1) (2018), 1-11.
 
- [18]       A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Amsterdam: Elsevier, 2006.
 
- [19]       S. Kumar, D. Kumar, and J. Singh, Numerical computation of fractional BlackeScholes equation arising in finan- cial market, egyptian journal of basic and applied sciences, 1 (2014), 177 -183.
 
- [20]       F. Mainardi, Fractional Calculus and Waves in Linear Visco-elasticity: An Introduction to Mathematical Models, Imperial College Press, London, 2010.
 
- [21]       K. S. Miller and B. Ross, An Introduction to the Fractional Integrals and Derivatives, Theory and Applications, New York, 1993.
 
- [22]       S. Mockary, A. Vahidi, and E. Babolian, An efficient approximate solution of Riesz fractional advection-diffusion equation, Computational Methods for Differential Equations, , 10(2) (2022), 307-319. DOI: 10.22034/CMDE.2021.41690.1815.
 
- [23]       K.B. Oldham and J. Spanier, The Fractional Calculus, New York, 1974.
 
- [24]       S. K. Panchal, Pravinkumar V. Dole, and Amol D. Khandagale, k-Hilfer-Prabhakar Fractional Derivatives and its Applications, Indian J. Math, 59( 2017), 367-383.
 
- [25]       R. K. Pandey and H. K. Mishra, Homotopy analysis Sumudu transform method for time—fractional third order dispersive partial differential equation, Adv. Comput. Math., 43(2017), 365–383.
 
- [26]       T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J, 19 (1971), 7-15.
 
- [27]       I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
 
- [28]       J. Rashidinia and E. Mohmedi, Numerical solution for solving fractional parabolic partial differential equations, Computational Methods for Differential Equations, 10(1) (2022), 121-143. DOI: 10.22034/CMDE.2021.41150.1787.
 
- [29]       N. H. Sweilam, A. M. Nagy, and A. A. EL-Sayed, Sinc-Chebyshev Collocation Method for Time-Fractional Order Telegraph Equation, Applied and computational mathematics, 19(2) (2020), 162-174.
 
- [30]       G. K. Watugala, Sumudu Transform- an Integral transform to solve differential equations and control engineering problems, Internat. J. Math. Ed. Sci. Tech, 24(1993), 35-43.
 
- [31]       A. Wiman, U¨ber den fundamental satz in der teorie der funktionen Eα(x)., Acta Math., 29 (1905), 191–201.
 
  			 
			 |