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ABSTRACT: 

A novel numerical method is proposed for computing the seismic response of linear and nonlinear 
systems. Single-degree-of-freedom (SDOF) and multi-degree-of-freedom (MDOF) systems are covered. 
The method is called load impulse method (LIM) because it uses the load impulse concept in its 
formulation. LIM is first extended for analyzing linear damped systems whose damping ratios are almost 
greater than 1% and nonlinear systems in general. To formulate LIM, the governing differential equation 
of motion (DEOM) is modified to have appropriate form for numerical integration. Then, it is integrated 
over time step using trapezoidal integration rule. Rearranging the obtained equation, the required 
relations are generated for computing seismic response of dynamic systems through simple iteration. The 
seismic response of several linear and nonlinear structural systems under dynamic loads is determined 
through the proposed LIM. A detailed comparison is then carried out between the results of LIM and those 
obtained from Duhamel integral, Newmark-β, and Wilson-θ methods. The results clearly show that the 
proposed LIM can robustly estimate the displacement, velocity, and acceleration time-histories of the 
dynamic systems within satisfactory computational cost. 

KEYWORDS: 
Load Impulse Method (LIM), Numerical method, Dynamic response, Linear and nonlinear analyses, 
structural vibration, Newmark-β, Duhamel integral. 

 

1. Introduction 

Equation of motion for the single-degree-of-
freedom (SDOF) systems is a fundamental issue in 
structural dynamics and vibration. The response of 
a structural system subjected to a time-dependent 
load function (e.g. earthquake load) is dominated by 
a ‘2nd-order’ differential equation (DE), which is 
called the governing differential equation of motion 
(DEOM). The dynamic response of structural 
systems is determined by solving this DE for 
successive time instance (Babaei, 2024). However, 
finding analytical solution is rarely possible in real 

cases and classic methods are almost impractical 
(Ebeling et al., 1997). Moreover, in most of 
structural cases, the seismic response of a multi-
degree-of-freedom (MDOF) structure is estimated 
through analyzing an equivalent model (Chopra, 
2003). As shown in the technical contexts 
(Vamvatsikos and Cornell, 2005), such a 
simplification decreases computational cost of 
MDOF structural analyses. 

In the literature, there are numerous analysis 
methods for estimating the dynamic response of the 
buildings, e.g., Wilson-θ (Wilson, 1968), linear 
acceleration (Chung and Hulbert, 1993), Newmark-
β (Newmark, 1959), HHT-α (Hilber et al., 1977), 
WBZ-α (Wood et al., 1980), the -method (Bazzi and 
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Anderheggen, 1982), HP-θ1 (Hoff and Pahl, 1988a; 
Hoff and Pahl, 1988b), Duhamel integral method 
(Clough and Penzien, 1995), and piecewise exact 
method (Veletsos et al., 1965; Chopra, 2012; 
Mohammadzadeh and Noh, 2014). In general, these 
methods are classified into two main groups. First, 
the procedures that are based on the superposition 
principle. These methods are limited to the linear 
systems and they estimate the dynamic response of 
structures by superposing numerous response 
contributions. Duhamel integral in time domain, 
Laplace, and Fourier transforms in frequency 
domain belong to this group (Hall et al., 2002; He, 
2008; Rahmati et al., 2010). Second, the stepwise 
procedures which use direct integration scheme in 
their formulation. These methods are completely 
general to be applied to linear and nonlinear 
systems undergoing severely varying excitation 
functions. Euler-Gauss, Runge-Kutta, Newmark-β, 
and Wilson-θ methods are some of the most known 
integration-based methods in dynamics. 

In recent decades, several simplified analysis 
methods have been extended, one of which is 
proposed by Li and Wu (2004) to determine the 
dynamic response of the inelastic SDOF systems 
with the time-varying mass and stiffness 
parameters. Wu (2013) proposed an iterative 
procedure to approximate the inelastic response of 
SDOF systems with the general nonlinear restoring 
forces. In another research, a new analytical method 
was proposed by the same authors for calculating 
the natural period of the SDOF systems. Serious 
attempts have been made by Chang (2004) to 
demonstrate the accuracy and efficiency of the 
Newmark-β method in solving the governing DE of 
nonlinear SDOF systems. Kazakov (2008) studied 
the response of SDOF systems using Duhamel 
integral method for some special dynamic load 
cases. The results showed that the Duhamel integral 
method is accurate enough in estimating the 
dynamic response of linear damped and undamped 
SDOF systems. A simple numerical method was then 
developed by Kurt and Çevik (2008) in which the 
Taylor polynomial was employed to estimate the 
dynamic response of the SDOF systems. Most 
recently, a novel single‐step method is developed 
for analyzing dynamic systems (Kim, 2019). It is an 
explicit time integration method which is based on 
the Newmark approximation. A generalized semi-
explicit method is also presented for solving 
dynamical problems of structures (Li et al., 2018). In 
an alternative work, two explicit methods, which 
benefit time integration scheme, are proposed 
based on displacement-velocity relations for 
treating the problems in structural dynamics 
(Zhang et al., 2019). Hanafi et al. (2024) improved 
some conventional methods to solve DE of motion. 
Recently, Atasoy et al. (2024), Babaei et al. (2021-
2024) presented advanced techniques for time-
history analysis of nonlinear systems. Although 
there exists a wide variety of methods, most are 

often complicated or need significant computational 
efforts.  

Now, in this paper, a different methodology is 
introduced for estimating the dynamic response of 
SDOF and MDOF systems subjected to arbitrary 
loading function. It is inspired from dynamical 
concept of load impulse, called load impulse method 
(LIM). It is first formulated for linear SDOF systems. 
Then, the nonlinear version of LIM is proposed for 
SDOF systems. To be general, MDOF version of LIM 
is also discussed. Systematic algorithms are 
prepared for each formulation discussed in the 
context. Finally, the seismic response of several 
structural systems under dynamic loading is 
determined through LIM. A detailed comparison is 
then carried out between the results obtained from 
LIM, Duhamel integral, Newmark-β, and Wilson-θ 
methods. The results show that the proposed 
method is reliable and can satisfactorily estimate 
the dynamic response of linear and nonlinear 
damped SDOF as well as MDOF systems with 
reasonable computational costs. It is observed that, 
although the impulse technique may not be as fast 
as Newmark-β and Wilson-θ methods, it benefits 
very simple formulation which vastly facilitates 
computer programming of dynamic analysis. 

2. Proposed procedure 

Fig. 1 shows an idealized SDOF mass-spring 
system, which is a fundamental issue in the 
mechanical vibration. Denoting the relative 
displacement of mass by ݔ and its corresponding 
velocity and acceleration by ̇ݔ and ̈ݔ, respectively, 
the governing DEOM for an elastic SDOF system 
subjected to a time-varying external load of (ݐ)ܨ can 
be presented by the following equation (Chopra, 
2012): 
 
ݔ݇ + ݔ̇ܿ + ݔ̈݉ =  (1) (ݐ)ܨ
 

 
Fig.	1. An idealized SDOF mass-spring system 

subjected to (ݐ)ܨ external load. 
 

 
As proved in the literatures, the governing DEOM 

of a structure subjected to ground acceleration ̈ݔ௚  at 
the support, is written as: 
 

 

ݔ݇ + ݔ̇ܿ + ݔ̈݉ =  ௚ (2)ݔ̈݉−
 
where ݉, ܿ, and ݇ are the mass, damping, and 
stiffness of the SDOF system, respectively. Eq. (2) 
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has another form which may be used in this work: 
 
 

߱௡ଶݔ + 2߱௡ݔ̇ߞ + ݔ̈ = ௚ݔ̈−  (3) 
 
where ߱௡  and ߞ are the natural angular frequency 
and damping ratio, which are obtained from ߱௡ଶ =
݇/݉ and ܿ/݉ = 2߱௡ߞ, respectively. 

2.1. Linear SDOF systems 
In this part, we discuss the basics of LIM for a 

linear SDOF dynamic system. First, we recall the 
impulse definition from particle dynamics. The load 
impulse is defined as the product of force and time 
as follows (Meriam, 2012): 

 

ܫ݀ = (4)  ݐ݀(ݐ)݂

 
The total impulse of the load applied to the mass ݉ , 
from ݐ௜  to ݐ௜ାଵ, can be calculated as follows: 
 

ܫ = න ݐ݀(ݐ)݂
௧೔శభ

௧೔
 (5)

 
Now, multiplying Eq. (2) by ݀ݐ, the load impulse 
terms of vibration equation is appeared: 
 

ݐ݀ݔ݇ + ݐ݀ݔ̇ܿ + ݐ݀ݔ̈݉ = (6) ݐ௚݀ݔ̈݉−

 
Each term of Eq. (6) corresponds to the impulse of a 
load component in the vibrating system. Noting that 
ݐ݀ݔ̇ = ݅ and integrating Eq. (6) from ݅ to ݔ݀ + 1, we 
can write: 
 

න ݐ݀ݔ݇
௧೔శభ

௧೔
+න ݔ݀ܿ

௫೔శభ

௫೔
+න ݐ݀ݔ̈݉

௧೔శభ

௧೔

= න ݐ௚݀ݔ̈݉−
௧೔శభ

௧೔
  

(7)

 
Assuming a linear variation for ݔ, and ̈ݔ௚(ݐ) with 
respect to time and employing trapezoidal 
integration rule (TIR) for the first, third, and the last 
terms of Eq. (7) gives: 
 
݇ℎ
2

௜ାଵݔ) + (௜ݔ + ௜ାଵݔ)ܿ − (௜ݔ +
݉ℎ
2

௜ାଵݔ̈) + (௜ݔ̈

= −
݉ℎ
2 ௚,௜ାଵݔ̈) +  (௚,௜ݔ̈

(8) 

 
where ݅  and ݅ + 1 indices represent the value of each 
quantity at ݐ௜  and ݐ௜ାଵ, respectively. The step size is 
also denoted by ℎ = ௜ାଵݐ −  ௜.  From now on, thisݐ
notation will be employed throughout the context. 
The recursive relationship for computing ݔ௜ାଵ can 

be obtained from Eq. (8), as follows: 

௜ାଵݔ = ௜ݔ −
݉ℎ
2c

ൣ൫̈ݔ௚,௜ାଵ + ௚,௜൯ݔ̈ +߱௡ଶ (ݔ௜ + (௜ାଵݔ

+ ௜ାଵݔ̈) +  ௜)൧ݔ̈
(9)

 
where ߱௡ଶ = ݇/݉. In a similar manner, using ̈ݐ݀ݔ =
 :in the third term of Eq. (6), we can integrate it as ݔ̇݀

න ݐ݀ݔ݇
௧೔శభ

௧೔
+න ݐ݀ݔ̇ܿ

௧೔శభ

௧೔
+ න  ݔ̇݀݉

௫̇೔శభ

௫̇೔

= න ݐ௚݀ݔ̈݉−
௧೔శభ

௧೔
  

(10)

 
Use of TIR results in the following equation: 

  
݇ℎ
2

௜ାଵݔ) + (௜ݔ +
ܿℎ
2

௜ାଵݔ̇) + (௜ݔ̇ + 

௜ାଵݔ̇)݉ +  − (௜ݔ̇ = −
ℎ
2 ௚,௜ାଵݔ̈) +  (௚,௜ݔ̈

 (11)

Solving Eq. (11) for ̇ݔ௜ାଵ, the recursive relation for 
the velocity is obtained: 

௜ାଵݔ̇ = ௜ݔ̇ −
ℎ
2
ൣ ൫̈ݔ௚,௜ାଵ + ௚,௜൯ݔ̈ + ߱௡ଶ (ݔ௜ାଵ + (௜ݔ

+ 2߱௡ݔ̇) ߞ௜ାଵ +  ௜)൧ݔ̇
(12)

where 2߱௡ߞ is used for ܿ/݉. Eq. (9) and (12) 
construct the base relations for LIM computation. 
Prediction response at each instance could be 
provided by linear approximation of ݔ௜ାଵ and ̇ݔ௜ାଵ at 
 :௜ାଵݐ
 

௜ାଵݔ = ௜ݔ +     ௜ℎݔ̇

௜ାଵݔ̇ = ௜ݔ̇ +  ௜ℎݔ̈

(13)

(14)

 
Acceleration should be directly determined by the 
governing DEOM given by Eq. (3):  
 

௜ାଵݔ̈ = ௚,௜ାଵݔ̈)− +߱௡ଶ ݔ௜ାଵ + 2߱௡ݔ̇ߞ௜ାଵ)  (15)

 
Stepwise algorithm of LIM for dynamic analysis of 
damped SDOF systems is summarized in Table 1. 

2.2. Linear MDOF systems 
Here, the proposed LIM is generalized to linear 

MDOF structural systems. This is simply carried out 
by vectorizing the relationships extended for the 
linear SDOF systems. First, the governing DEOM for 
the MDOF systems subjected to (ݐ)ܨ external 
dynamic load is expressed as: 

 

{ݔ}[݇] + {ݔ̇}[ܿ] + {ݔ̈}[݉] = (16) {(ݐ)ܨ}

 
where [݉], [ܿ], and [݇] are the mass, damping, and 
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stiffness matrices of the MDOF system, 
respectively.  {(ݐ)ܨ} is the external dynamic load 
vector. For MDOF structural system subjected to 
support excitation, ൛̈ݔ௚ൟ, DEOM can be written as 
follows: 
 

{ݔ}[݇] + {ݔ̇}[ܿ] + {ݔ̈}[݉] = (17) {௚ݔ̈}[݉]−

 
Similar to SDOF systems, the load impulse for MDOF 
system is defined as the product of the force vector 
 :ݐ݀ and time differential of {(ݐ)ܨ}
 

{ܫ݀} = (18) ݐ݀ {(ݐ)݂}

 
Then, the total impulse of the load applied to the 
MDOF structure can be given by: 
 

{ܫ݀} = න ݐ݀ {(ݐ)݂}
௧೔శభ

௧೔
 (19)

 
Multiplying Eq. (17) by ݀ݐ, we have: 
 

ݐ݀{ݔ}[݇] + ݐ݀{ݔ̇}[ܿ] + ݐ݀{ݔ̈}[݉]
= (20) ݐ݀{௚ݔ̈}[݉]−

Table 1. Stepwise algorithm of LIM for estimating the seismic response of linear damped SDOF systems 
1. Choose the time increment ℎ and initialize with: * 

݅ = 1, ଵݐ = ଵݔ   ,0 = ଵݔ̇   ,(0)ݔ = ଵݔ̈   ,(0)ݔ̇ = ௚,ଵݔ̈)− + 2߱௡ݔ̇ߞଵ +߱௡
ଶ ݔଵ)  

2. Predict the response at time instance ݅ + 1: 
௜ାଵݔ ≅ ௜ݔ +  ௜ℎݔ̇
௜ାଵݔ̇ ≅ ௜ݔ̇ +  ௜ℎݔ̈

3. Update the response at time instance ݅ + 1: * 
௜ାଵݔ̈ = ௚,௜ାଵݔ̈)− + ߱௡ଶ ݔ௜ାଵ + 2߱௡ݔ̇ ߞ௜ାଵ) 

௜ାଵݔ = ௜ݔ −
݉ℎ
2ܿ ቀ൫̈ݔ௚,௜ାଵ + ௚,௜൯+߱௡ݔ̈

ଶ(ݔ௜ାଵ + (௜ݔ + ௜ାଵݔ̈) +  ௜)ቁݔ̈

௜ାଵݔ̇ = ௜ݔ̇ −
 ℎ
2 ቀ൫̈ݔ௚,௜ାଵ + ௚,௜൯+߱௡ݔ̈

ଶ(ݔ௜ାଵ + (௜ݔ + 2߱௡ݔ̇) ߞ௜ାଵ +  ௜)ቁݔ̇

4. Repeat steps 2 and 3 until none of the precision criteria is met. ** 
5. Set ݅ → ݅ + 1 and repeat steps 2 to 5 for the next time instances. 

*For the case of external loads, use the followings instead of support excitation in steps 1 and 3, respectively: 
ଵݔ̈ = ݉ିଵ൫ܨଵ − ଵݔ݇) +   ଵ)൯ݔ̇ܿ
௜ାଵݔ̈ = ݉ିଵ൫ܨ௜ାଵ − ௜ାଵݔ݇) +  ௜ାଵ)൯ݔ̇ܿ

**Two or three iterations often yield satisfactorily accurate response.  
Important note: Impulse load method does not yield reliable results for undamped systems and the systems for 
which ܿ ≅ 0. 

 

 
Recalling {̇ݔ}݀ݐ =  and integrating Eq. (20) {ݔ}݀
from ݐ௜  to ݐ௜ାଵ, we get: 
 

න ݐ݀{ݔ}[݇]
௧೔శభ

௧೔
+න {ݔ}݀[ܿ]

{௫೔శభ}

{௫೔}

+න ݐ݀{ݔ̈}[݉]
௧೔శభ

௧೔

= න ݐ݀{௚ݔ̈}[݉]−
௧೔శభ

௧೔
 

(21)

 
In linear MDOF systems, we assume that the 

mass, damping, and stiffness matrices all remain 
unchanged throughout vibration. Therefore, [݇], [ܿ], 
and [݉] can be treated as constant values in 
integration. Now, using TIR, we obtain: 

ℎ
2

{௜ାଵݔ})[݇] + ({௜ݔ} + −{௜ାଵݔ})[ܿ] ({௜ݔ}

+
ℎ
2

{௜ାଵݔ̈})[݉] + ({௜ݔ̈}

= −
ℎ
2

[݉]൫൛̈ݔ௚,௜ାଵൟ+ ൛̈ݔ௚,௜ൟ൯ 

(22)

 
Solving {ݔ௜ାଵ}, the required relation for computing 
displacement in iteration process of LIM is 
obtained: 
 

{௜ାଵݔ} = {௜ݔ} −
ℎ
2

[ܿ]ିଵ[݉] ቀ ൫൛̈ݔ௚,௜ାଵൟ+ ൛̈ݔ௚,௜ൟ൯
+ [݉]ିଵ[݇] ({ݔ௜ାଵ} + ({௜ݔ}
+ {௜ାଵݔ̈}) +  ቁ({௜ݔ̈}

(23) 

 
To extract the required recursive relation for 

 in Eq. (20) {ݔ̇݀} for ݐ݀{ݔ̈} we first substitute ,{௜ାଵݔ̇}
and integrate it from ݅ to ݅ + 1:  
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න ݐ݀{ݔ}[݇]
௧೔శభ

௧೔
+න ݐ݀{ݔ̇}[ܿ]

௧೔శభ

௧೔

+න  {ݔ̇݀}[݉]
{௫̇೔శభ}

{௫̇೔}

= න ݐ݀{௚ݔ̈}[݉]−
௧೔శభ

௧೔
 

(24)

 
Applying TIR to estimate the first, second, and last 
integrals, we obtain: 
 
ℎ
2

{௜ାଵݔ})[݇] + ({௜ݔ} +
ℎ
2

{௜ାଵݔ̇})[ܿ] + ({௜ݔ̇}
+ {௜ାଵݔ̇})[݉] + ({௜ݔ̇}

= −
ℎ
2

[݉]൫൛̈ݔ௚,௜ାଵൟ+ ൛̈ݔ௚,௜ൟ൯ 

(25)

 
It gives the iteration formula required for {̇ݔ௜ାଵ}: 

{௜ାଵݔ̇} = −{௜ݔ̇}
ℎ
2 ቀ
൫൛̈ݔ௚,௜ାଵൟ+ ൛̈ݔ௚,௜ൟ൯

+ [݉]ିଵ[݇]({ݔ௜ାଵ} + ({௜ݔ}
+ [݉]ିଵ[ܿ]({̇ݔ௜ାଵ} +  ቁ({௜ݔ̇}

(26)

 
Eqs. (21) and (24) constitute the base relations for 
iteration process in LIM. Prediction is performed by 
linear estimation of {ݔ௜ାଵ}, and {̇ݔ௜ାଵ}: 
 

{௜ାଵݔ} = {௜ݔ} + ℎ {̇ݔ௜} 

{௜ାଵݔ̇} = {௜ݔ̇} + ℎ {̈ݔ௜} 
(27)
(28)

 
Acceleration vector is directly calculated from the 
governing DEOM as follows: 
 

{௜ାଵݔ̈} = −൫൛̈ݔ௚,௜ାଵൟ+ [݉]ିଵ[݇]{ݔ௜ାଵ}
+ [݉]ିଵ[ܿ]{̇ݔ௜ାଵ}൯ 

(29)

 
It is noted that the proposed LIM needs the MDOF 
structure to have an invertible damping matrix. 

 
Table 2. Stepwise algorithm of LIM for estimating the seismic response of linear damped MDOF systems 

1. Choose the time increment ℎ and initialize with: * 
݅ = ଵݐ   ,1 = {ଵݔ}   ,0 = {ଵݔ̇}   ,{ (0)ݔ} = {ଵݔ̈}   ,{(0)ݔ̇} = −൫൛̈ݔ௚,ଵൟ+ [݉]ିଵ[݇]{ݔଵ} + [݉]ିଵ[ܿ]{̇ݔଵ}൯ 

2. Predict the response at time instance ݅ + 1 
{௜ାଵݔ} ≅ {௜ݔ} + ℎ {̇ݔ௜} 
{௜ାଵݔ̇} ≅ {௜ݔ̇} + ℎ {̈ݔ௜} 

3. Update the response at time instance ݅ + 1: * 
{௜ାଵݔ̈} = −൫൛̈ݔ௚,௜ାଵൟ+ [݉]ିଵ[݇]{ݔ௜ାଵ} + [݉]ିଵ[ܿ]{̇ݔ௜ାଵ}൯ 

{௜ାଵݔ} = −{௜ݔ}
ℎ
2

[ܿ]ିଵ[݉]ቀ ൫൛̈ݔ௚,௜ାଵൟ+ ൛̈ݔ௚.௜ൟ൯+ [݉]ିଵ[݇] ({ݔ௜ାଵ} + ({௜ݔ} + {௜ାଵݔ̈}) +  ቁ({௜ݔ̈}

{௜ାଵݔ̇} = −{௜ݔ̇}
ℎ
2 ቀ൫൛̈ݔ௚,௜ାଵൟ+ ൛̈ݔ௚,௜ൟ൯+ [݉]ିଵ[݇]({ݔ௜ାଵ} + ({௜ݔ} + [݉]ିଵ[ܿ]({̇ݔ௜ାଵ} +  ቁ({௜ݔ̇}

4. Repeat steps 2 and 3 until none of the precision criteria is met in its vector form. ** 
5. Set ݅ → ݅ + 1 and repeat step 2 to 5 for the next time instances. 

*For the case of external loads, use the followings instead of support excitation in steps 1 and 3, respectively: 
ଵݔ̈ = [݉]ିଵ(ܨଵ − {ଵݔ̇}[ܿ]) +   (({ଵݔ}[݇]
௜ାଵݔ̈ = [݉]ିଵ൫ܨ௜ାଵ − {௜ାଵݔ̇}[ܿ]) +  ൯({௜ାଵݔ}[݇]

**Two or three iterations often satisfactorily yield accurate response.  
Important note: Impulse load method does not yield reliable results for undamped systems for which [c] ≡ 0 or 
([ܿ])ݐ݁ܦ ≈ 0. 

 
Thus, LIM cannot be used to estimate the 

dynamic response of the undamped structures for 
which the determinant of the damping matrix 
approaches zero. The detailed steps of LIM for 
estimating the dynamic response of linear damped 
MDOF systems are summarized in Table 2. 

2.3. Nonlinear SDOF systems 
The governing DEOM for a nonlinear SDOF 

system subjected to the ground acceleration ݔ௚̈(ݐ) 
can be formulated as (Chopra, 2012): 

 

,ݔ)௦ܨ (ݔ̇ + , ݔ)ௗܨ (ݔ̇ ݔ̈݉+ = ௚ (30)ݔ̈݉−

 
where ܨ௦(ݔ, ,ݔ)ௗܨ and (ݔ̇  are the inelastic (ݔ̇
resisting and non-viscus damping forces, 
respectively. The values of ܨ௦ and ܨௗ typically 
depend on the displacement and velocity time-
histories of the nonlinear SDOF system in the 
previous instances. Multiplying Eq. (30) by ݀ݐ, we 
have: 
 

,ݔ)௦ܨ ݐ݀(ݔ̇ + , ݔ)ௗܨ ݐ݀(ݔ̇ + ݐ݀ݔ̈݉ = (31) ݐ௚݀ݔ̈݉−
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Recalling ݀̇ݔ =  we integrate Eq. (31) from ݅ to ,ݐ݀ݔ̈
݅ + 1: 
 

න ,ݔ)௦ܨ ݐ݀(ݔ̇
శ૚࢏࢚

࢏࢚
+න , ݔ)ௗܨ ݐ݀(ݔ̇

శ૚࢏࢚

࢏࢚

+න ݔ̇݀݉
శ૚࢏̇࢞

࢏̇࢞

= −න ݐ௚݀ݔ̈݉
శ૚࢏࢚

࢏࢚
 

(32)

 
Approximating the first, second, and last integrals 
by TIR, we obtain: 
 
ℎ
2
൫ܨ௦,௜ାଵ + ௦,௜൯ܨ +

ℎ
2
൫ܨௗ,௜ାଵ + ௗ,௜൯ܨ

௜ାଵݔ̇) ݉+ − (௜ݔ̇

= −
݉ℎ
2 ௚,௜ାଵݔ̈) +  (௚,௜ݔ̈

(33)

 
Each term of Eq. (33) represents the total impulse 
loads related to the spring, friction, inertia, and the 
external force, respectively. Solving Eq. (33) for 
 :௜ାଵ, we getݔ̇

 

௜ାଵݔ̇ = ௜ݔ̇ −
ℎ

2݉
൫݉̈ݔ௚,௜ାଵ + ௗ,௜ାଵܨ + ௦,௜ାଵ൯ܨ

−
ℎ

2݉
൫݉̈ݔ௚,௜ +  ௦,௜൯ܨ+ௗ,௜ܨ

(34) 

Using Eq. (2), we can simplify Eq. (34) as: 
 

௜ାଵݔ̇ = ௜ݔ̇ +
ℎ
2

௜ݔ̈) + ௜ାଵ) (35)ݔ̈

 
This formula is not a new one; however, it says 

that we can use available integration tools in 
computation of derivatives. Eq. (35) is known as 
Adams-Moulton method (AMM) in numerical 
calculus of solving ODEs. AMM benefits trapezoidal 
integration rule (TIR) in its body. In vibration 
analysis, the governing equation is a 2nd-order ODE. 
So, 2nd-order derivatives are available while 
computing the response. Based on this fact, the 
displacement is suggested to simply and accurately 
be estimated by corrected trapezoidal integration 
rule (CTIR), as follows: 

௜ାଵݔ = ௜ݔ +
ℎ
2

௜ݔ̇) + (௜ାଵݔ̇ +
ℎ

12
௜ݔ̈) − ௜ାଵ) (36)ݔ̈

Eqs. (33) and (34) should be coupled with the 
following equation obtained from the governing 
DEOM: 
 

௜ାଵݔ̈ = −݉ିଵ൫݉̈ݔ௚,௜ାଵ + ௗ,௜ାଵܨ + ௦,௜ାଵ൯ (37)ܨ

 
Table 3. Stepwise algorithm of LIM for estimating the seismic response of nonlinear SDOF systems 

1. Choose the time increment ∆ݐ and initialize with: * 
ଵݐ = ଵݔ   ,  0 = ଵݔ̇   ,  (0)ݔ =  (0)ݔ̇
௦,ଵܨ = ,ଵݔ)௦ܨ ௗ,ଵܨ   ,  (ଵݔ̇ = ,ଵݔ)ௗܨ  (ଵݔ̇
ଵݔ̈ = −݉ିଵ൫݉ܽ௚,ଵ + ௦,ଵܨ +  ௗ,ଵ൯ܨ

2. Predict the response at time instance ݅ + 1: 
௜ାଵݔ ≅ ௜ݔ +  ௜ℎݔ̇
௜ାଵݔ̇ ≅ ௜ݔ̇ +  ௜ℎݔ̈

3. Update the response at time instance ݅ + 1: * 
௦,௜ାଵܨ = ,௜ାଵݔ)௦ܨ ௗ,௜ାଵܨ   ,     (௜ାଵݔ̇ = ௜ାଵݔ)ௗܨ ,  (௜ାଵݔ̇
௜ାଵݔ̈  = −݉ିଵ൫݉̈ݔ௚,௜ାଵ + ௦,௜ାଵܨ +  ௗ,௜ାଵ൯ܨ

௜ାଵݔ̇ = ௜ݔ̇ +
ℎ
2

௜ݔ̈) +  (௜ାଵݔ̈

௜ାଵݔ = ௜ݔ +
ℎ
2

௜ݔ̇) + (௜ାଵݔ̇ +
ℎ

12
௜ݔ̈) −  (௜ାଵݔ̈

4. Repeat step 3 until none of the precision criteria is met. ** 
5. Set ݅ = ݅ + 1 and repeat steps 2 to 5 for the next time instances. 
*For the case of external loads instead of support excitation, use the followings in steps 1 and 3, respectively: 

ଵݔ̈ = ݉ିଵ ቀܨଵ − ൫ܨ௦,ଵ +  ௗ,ଵ൯ቁܨ

௜ାଵݔ̈ = ݉ିଵ ቀܨ௜ାଵ − ൫ܨ௦,௜ାଵ +  ௗ,௜ାଵ൯ቁܨ
**Two or three iterations often satisfactorily yield accurate response. 

 
The procedure of nonlinear LIM algorithm for 

estimating SDOF systems are summarized in Table 
3. Notably, both damped and undamped systems are 
covered in this formulation. Nonlinear LIM is one of 
the simplest algorithms for dynamic analysis of 

structural systems. It is completely general to deal 
with various types of nonlinearities and external 
loadings.  
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2.4. Nonlinear MDOF systems 
A great advantage of nonlinear LIM algorithm, 

presented for SDOF systems, is its generalizability 
to MDOF systems without any change in its 
formulation. In this regard, we merely present the 
vector form of the relations which is developed for 
SDOF systems. For the sake of convenience, the 
implementation steps of nonlinear LIM algorithm 
are provided in Table 4. Notably, there is no 
restriction on the properties of structural system 
and loading function while working with this 
algorithm. 

2.5. Precision criteria 
Precision check of solution is of high importance 

with numerical approaches. There are various tools 
for evaluating the accuracy and efficiency of the 
numerical methods. Some of the well-defined 
convergence criteria are as follows: 
1. The residual of the governing DEOM can be 
basically identified as the unbalanced force. If the 
estimation precision is accurately enough, the 
absolute value of the governing DEOM approaches 
zero. Hence, the absolute value of the governing 
DEOM approaches zero. Hence, the absolute value of 
the residual function can suitably be employed to 
check the accuracy of the proposed method. The 
error in the form of the unbalanced forces for a 
SDOF system at a given time instance is as follows: 
 

ܴ௜ = ௜ܨܷ = ห݉̈ݔ௜ + ௜ݔ̇ܿ + ௜ݔ݇ + ௚,௜ห (38)ݔ̈݉

 
The residual function for a nonlinear SDOF 
system can be obtained in a similar manner as 
follows: 

 

ܴ௜ = ௜ܨܷ = หܨ௦,௜ + ௗ,௜ܨ + ௜ݔ݇ + ௚,௜ห (39)ݔ̈݉

 
2. For an arbitrary time-varying dynamic load 
function of ݔ̈݉ ,(ݐ)ܨ௚,௜ must be replaced by −ܨ௜  in 
Eqs. (38) and (39). The residual function at ݆th 
iteration of the ݅th time instance, ܴ௜

(௝), must satisfy 
the following inequality: 
 

หܴ௜
(௝)ห ≤ ௥ (40)ߝ

 
where ߝோ  is the tolerance parameter and selected a 
value ranging from 10ି଼ to 10ିଷ. 
3. Alternative criterion of accuracy level in 
numerical analysis is the displacement change of 
௜ݔ∆

(௝) = ௜ݔ
(௝) − ௜ݔ

(௝ିଵ). This criterion will be satisfied 
at ݆th iteration of ݅th time instance if: 
 

ห∆ݔ௜
(௝)ห ≤ ௗ (41)ߝ

 
where ߝௗ  is the displacement tolerance 
parameter and often selected a value ranging 
from 10ି଼ to 10ିଷ. 
4. The virtual work obtained by the residual force 
ܴ௜

(௝) = ܴ௜
(௝) − ܴ௜

(௝ିଵ) at the displacement change 
௜ݔ∆

(௝) = ௜ݔ
(௝) − ௜ݔ

(௝ିଵ) could be another choice. This 
criterion is satisfied if the value of virtual work 
stands less than ߝ௪: 
 
1
2
ห∆ݔ௜

(௝)ܴ௜
(௝)ห ≤ ௪ߝ  (42)

 
Table 4. Stepwise algorithm of LIM for estimating the seismic response of nonlinear MDOF systems 

1. Choose the time increment ℎ and initialize with: * 
ଵݐ = {ଵݔ}   ,  0 = {ଵݔ̇}   ,  {(0)ݔ} =  {(0)ݔ̇}
൛ܨ௦,ଵൟ = ,ଵݔ)௦ܨ} ௗ,ଵൟܨଵ)}  ,   ൛ݔ̇ = ,ଵݔ)ௗܨ}  {(ଵݔ̇
{ଵݔ̈} = −[݉]ିଵ൫[݉]൛ܽ௚,ଵൟ+ ൛ܨ௦,ଵൟ+ ൛ܨௗ,ଵൟ൯ 

2. Predict the response at time instance ݅ + 1: 
{௜ାଵݔ} = {௜ݔ} + ℎ {̇ݔ௜} 
{௜ାଵݔ̇} = {௜ݔ̇} + ℎ {̈ݔ௜} 

3. Update the response at time instance ݅ + 1: ** 
൛ܨ௦,௜ାଵൟ = ௜ାଵݔ)௦ܨ} , ௗ,௜ାଵൟܨ௜ାଵ)}     ,   ൛ݔ̇ = ௜ାଵݔ)ௗܨ} ,  {(௜ାଵݔ̇
{௜ାଵݔ̈}  = −[݉]ିଵ൫[݉]൛̈ݔ௚,௜ାଵൟ+ ൛ܨ௦,௜ାଵൟ+ ൛ܨௗ,௜ାଵൟ൯ 

{௜ାଵݔ̇} = {௜ݔ̇} +
ℎ
2

{௜ݔ̈}) +  ({௜ାଵݔ̈}

{௜ାଵݔ} = {௜ݔ} +
ℎ
2

{௜ݔ̇}) + ({௜ାଵݔ̇} +
ℎ

12
−{௜ݔ̈})  ({௜ାଵݔ̈}

4. Repeat step 3 until none of the precision criteria is met in its vector form. ** 
5. Set ݅ = ݅ + 1 and repeat steps 2 to 5 for the next time instances. 

*For the case of external loads instead of support excitation, use the followings in steps 1 and 3, respectively: 
{ଵݔ̈} = [݉]ିଵ ቀ{ܨଵ}− ൫൛ܨௗ,ଵൟ+ ൛ܨ௦,ଵൟ൯ቁ 

{௜ାଵݔ̈} = [݉]ିଵ ቀ{ܨ௜ାଵ}− ൫൛ܨௗ,௜ାଵൟ+ ൛ܨ௦,௜ାଵൟ൯ቁ 
**Two or three iterations often yield satisfactorily accurate response. 

https://doi.org/10.22034/CEEJ.2021.41770.1963
https://orcid.org/0000-0002-9080-1893
mailto:maysam.jalilkhani@ltu.se
mailto:s.mollaei@ubonab.ac.ir


Mehdi Babaei et al. / J. Civ. Env. Eng. 55 (2025)   8 
 

 

 

The value for the tolerance ߝ௪  is often selected near 
the computer precision, i.e., the smallest positive 
value recognizable by the computer because the 
left-hand side of Eq. (42) is a product of two 
infinitesimal quantities (Chopra, 2012). In the next 
part, the accuracy of the proposed LIM is mostly 
evaluated for several example case studies using the 
first and second criteria. 

3. Numerical examples 

In this part, the accuracy and efficiency of the 
proposed procedures in estimating the seismic 
response of different linear and nonlinear systems 
(hereafter referred to M1 to M5 models) under 
dynamic loads is investigated. The values of mass 
(݉), natural fundamental period (ܶ), damping ratio 
(), and stiffness (k) related to each model are 
presented in Table 5. Displacement time-history 
response for each model is first calculated through 
the proposed LIM and then computed by the robust 
Duhamel integral, Newmark-β, and Wilson-θ 
methods. In the analyses, the time increment is 
assumed equal to the ground motion sampling time-
step, first. Then, in order to show the convergence 
of the new method, the analysis step is decreased to 
ten times smaller than the ground motion recording 
step. Time-acceleration of the two selected 
earthquake records, together with their recording 
time step (ℎ௥), and peak ground accelerations 
(PGAs) have been indicated in Fig. 2. 

3.1. Numerical analysis of linear SDOF system 
Figs. 3 and 4 compare the displacement time-

histories of models M1 and M2. They are estimated 
by the proposed LIM algorithm and those given by 

the Duhamel integral and Newmark-β methods 
under El Centro and Kobe earthquakes, 
respectively. As shown in Figs. 3 and 4, except the 
time instances ranging from 3 to 11 seconds in the 
M1 model, LIM estimates the displacement 
response of the M1 and M2 models with high 
accuracy. This deficiency is originated from using 
larger step in analysis, which is not appropriate for 
the procedure. As evident in Figs. 3 and 4, the 
displacement demands obtained from the proposed 
method fully matches those from the Duhamel 
integral and Newmark-β approaches. It is noted that 
even when time increment is relatively large, the 
peak values of the responses obtained by the 
proposed method well matches those from the 
conventional methods. The discrepancies between 
the results are fully eliminated when a sufficiently 
small step (i.e., 10% of the ground motion time-
step) is used. Figs. 5 and 6 compare the response 
time-histories of the M1 and M2 models which are 
estimated by finer mesh. 

As shown in these figures, the proposed method 
can appropriately estimate the dynamic response of 
the M1 and M2 models with sufficient accuracy in all 
cases. Tables 6 and 7 also compare the peak 
responses obtained from various methods. The 
results clearly show that there is good agreement 
between the results obtained from the proposed 
and Newmark-β methods. A quantitative 
comparison of the results obtained from the 
proposed LIM and the other methods has been 
provided in Tables 8 and 9 for the M1 and M2 
models, respectively. The estimation errors from 
the proposed procedure have also been presented 
in these tables. Deviation from the conventional 
methods is almost less than 1%. 

 
 

Table 5. Dynamic properties of the structural models in the examples. 

Model Type Behavior Excitation m	
(kip.sec2/in) c T  

(sec) 

k  

(kips/in) 

M1 SDOF Linear El-Cento Record 1 0.02 0.5 157.9 

M2 SDOF Linear Kobe Record 1 0.05 0.3 438.7 

M3 MDOF Linear External Force ቂ1 0
0 2ቃ ቂ 0.36 −0.18

−0.18 0.18 ቃ ቂ3.475
2.421ቃ ቂ 6 −2

−2 8 ቃ 

M4 SDOF Nonlinear El-Cento Record 1 0.02 0.5 157.9 

M5 SDOF Nonlinear Kobe Record 1 0.05 0.3 438.7 
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Fig. 2. The earthquake ground motion records used for dynamic analysis of M1, M2, M4, and M5 models. 

 
 

  
Fig. 3. Displacement time-histories obtained from LIM, Duhamel, and Newmark-β methods for M1 

model under El Centro ground motion record. The analysis time step is h= 0.02 sec. 
 

 

  
Fig. 4. Displacement time-histories obtained from LIM, Duhamel, and Newmark-β methods for M2 

model under Kobe ground motion record. The analysis time step is h=0.01 sec. 
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Fig. 5. Response time-histories for M1 model under El Centro ground motion record. The analysis 

time step is ℎ =  .ܿ݁ݏ 0.002
 

 
According to the results, the main advantages of 

the proposed procedure in estimating the seismic 
response of the linear damped SDOF systems are as 
follows: (1) the estimation errors from LIM 
gradually decays in the proceeding instances; (2) 
Unlike similar approaches, fewer initialization 
parameters are required by LIM algorithm; (3) A 
fast convergence rate is provided by LIM and a 
satisfactory level of precision is offered; (4) Because 
LIM computation is of first order [O], it works faster 
than the Duhamel integral which uses the 

computation of order two [O]2. 

3.2. Numerical analysis of linear MDOF system 
In this example, the proposed LIM is checked on 

a linear MDOF structural model, which is depicted 
in Fig. 7. For this purpose, the dynamic response of 
the M3 model is determined by LIM and then it is 
computed and compared with the results from the 
most known Wilson-θ method devised for analyzing 
MDOF systems. 

 

Fig. 6. Response time-histories for M2 model under Kobe ground motion record. The analysis time 
step is ℎ = 0.001 sec. 
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Table 6. Summary results obtained from LIM, Duhamel, and Newmark-β methods for M1 model. 

Method ̈ݔ௠௔௫  
(in/sec2) 

  ௠௔௫ݔ̇
(in/sec) 

  ௠௔௫ݔ
(in) 

Analysis time  
(sec) # of iterations Time step ℎ  

(sec) 
Duhamel - - 2.6881 13.611 1 0.002 

Newmark-β 486.42 32.265 2.2880 0.002 1 0.002 

LIM 487.11 32.203 2.6878 0.004 2 0.002 
 

 

Table 7. Summary results obtained from LIM, Duhamel, and Newmark-β methods for M2 model. 

Method ̈ݔ௠௔௫ 
(in/sec2) 

 ௠௔௫ݔ̇
(in/sec) 

 ௠௔௫ݔ
(in) 

Analysis time 
(sec) # of iterations Time step ℎ 

(sec) 
Duhamel - - 0.7127 96.66 1 0.001 

Newmark-β 284.90 13.637 0.7127 0.005 1 0.001 
LIM 284.93 13.654 0.7124 0.011 2 0.001 

 
Table 8. Results obtained from LIM, Duhamel, and Newmark-β methods for M1 model under El Centro ground motion 

record. The analysis time step is  ℎ =  .ܿ݁ݏ 0.002

௜ݐ  
(sec) 

Displacement ݔ௜  (݅݊) Velocity ̇ݔ௜(݅݊/ܿ݁ݏ) Acceleration ̈ݔ௜  Error (ଶܿ݁ݏ/݊݅) 

Duhamel Newmark-β LIM Newmark-β LIM Newmark-β LIM 

௜ݔ  respect 
to 

Duhamel 
(%) 

UF of 
LIM 

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00 <1e-5 
1.2 -0.085 -0.085 -0.085 -3.358 -3.358 -11.875 -11.877 0.00 <1e-5 
2.4 -2.147 -2.147 -2.147 22.527 22.522 443.443 443.474 0.01 <1e-5 
3.6 1.394 1.394 1.394 -3.407 -3.393 -215.471 -215.495 0.01 <1e-5 
4.8 -0.618 -0.618 -0.617 7.892 7.877 142.881 142.818 0.13 <1e-5 
6.0 0.814 0.814 0.813 -8.541 -8.529 -125.880 -125.793 0.14 <1e-5 
7.2 -0.977 -0.976 -0.975 -2.589 -2.597 165.131 165.011 0.16 <1e-5 
8.4 0.558 0.557 0.556 9.138 9.141 -80.702 -80.552 0.34 <1e-5 
9.6 0.294 0.295 0.296 -11.785 -11.781 -59.903 -60.067 0.71 <1e-5 

10.8 -0.456 -0.457 -0.457 5.197 5.187 63.523 63.635 0.31 <1e-5 
12.0 -0.229 -0.229 -0.229 8.997 9.009 7.770 7.768 0.00 <1e-5 
13.2 0.176 0.177 0.177 0.495 0.490 -23.556 -23.629 0.51 <1e-5 
14.4 -0.828 -0.828 -0.828 -3.561 -3.563 126.406 126.462 0.08 <1e-5 
15.6 0.202 0.202 0.202 1.543 1.548 -43.505 -43.507 0.00 <1e-5 
16.8 0.217 0.217 0.217 -1.956 -1.959 -41.909 -41.940 0.18 <1e-5 
18.0 -0.007 -0.007 -0.007 1.246 1.246 1.036 1.077 NA** <1e-5 
19.2 -0.129 -0.128 -0.128 -2.057 -2.057 10.115 10.081 0.39 <1e-5 
20.4 -0.438 -0.438 -0.438 2.088 2.086 94.361 94.382 0.07 <1e-5 
21.6 0.432 0.432 0.432 5.118 5.122 -78.655 -78.641 0.05 <1e-5 
22.8 -0.329 -0.329 -0.328 -2.408 -2.412 65.069 65.009 0.24 <1e-5 
24.0 -0.018 -0.018 -0.019 0.446 0.447 17.305 17.367 4.4 <1e-5 
25.2 0.547 0.547 0.547 3.968 3.971 -76.050 -76.081 0.07 <1e-5 
26.4 -1.282 -1.282 -1.282 -5.687 -5.692 197.229 197.196 0.03 <1e-5 
27.6 0.406 0.406 0.405 11.931 11.936 -75.580 -75.477 0.32 <1e-5 
28.8 0.001 0.002 0.002 -7.875 -7.875 17.593 17.457 NA** <1e-5 
30.0 -0.177 -0.178 -0.179 3.643 3.637 27.791 27.890 0.67 <1e-5 
31.2 0.237 0.237 0.237 -1.1888 -1.180 -36.854 -36.887 0.17 <1e-5 

ܨ* ௜ܷ is the unbalanced force of the proposed analysis method. 
**NA: Not Applicable since the value of ݔ௜  is under computation precision level which is approximately 1e-3. 
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Fig. 7. M3 model with two degrees of freedom subjected to the external load {(ݐ)ܨ} (Rao, 2017). 

 
Table 9. Results obtained from LIM, Duhamel, and Newmark-β methods for M2 model under Kobe ground motion record. 

The analysis time step is ℎ =  ܿ݁ݏ 0.001

௜ݐ  
(sec) 

Displacement ݔ௜  (݅݊) Velocity ̇ݔ௜(݅݊/ܿ݁ݏ) Acceleration ̈ݔ௜  Error (ଶܿ݁ݏ/݊݅) 

Duhamel Newmark-β LIM Newmark-β LIM Newmark-β LIM 

௜ݔ  respect 
to 

Duhamel 
(%) 

UF of 
LIM 

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 <1e-5 

1.2 -0.004 -0.004 -0.004 0.063 0.063 2.308 2.3080 0 <1e-5 

2.4 0.083 0.083 0.083 0.509 0.509 -3.835 -3.8360 0 <1e-5 

3.6 -0.431 -0.431 -0.431 -6.311 -6.312 171.713 171.696 0 <1e-5 

4.8 -0.132 -0.132 -0.132 -1.53 -1.532 115.862 115.844 0 <1e-5 

6.0 0.225 0.225 0.225 0.692 0.691 -37.2060 -37.227 0 <1e-5 

7.2 0.395 0.396 0.396 -11.242 -11.241 -134.844 -134.869 0.25 <1e-5 

8.4 0.292 0.292 0.292 7.448 7.450 -95.529 -95.531 0 <1e-5 

9.6 -0.014 -0.014 -0.014 3.901 3.902 9.901 9.9360 0 <1e-5 

10.8 0.422 0.422 0.422 -3.233 -3.230 -207.728 -207.718 0 <1e-5 

12.0 -0.168 -0.168 -0.168 1.575 1.576 54.839 54.837 0 <1e-5 

13.2 -0.119 -0.119 -0.12 6.111 6.111 66.905 66.93 0.84 <1e-5 

14.4 0.126 0.126 0.126 0.052 0.052 -36.087 -36.069 0 <1e-5 

15.6 -0.005 -0.005 -0.005 -0.519 -0.519 3.700 3.6990 0 <1e-5 

16.8 -0.090 -0.090 -0.090 0.499 0.499 33.573 33.572 0 <1e-5 

18.0 -0.039 -0.039 -0.039 1.304 1.304 -0.406 -0.4000 0 <1e-5 

19.2 -0.002 -0.002 -0.002 0.939 0.939 -8.635 -8.628 0 <1e-5 

20.4 -0.005 -0.005 -0.005 -0.266 -0.266 6.769 6.773 0 <1e-5 

21.6 -0.005 -0.005 -0.005 0.821 0.821 13.844 13.845 0 <1e-5 

22.8 0.03 0.03 0.03 -0.228 -0.228 -1.478 -1.479 0 <1e-5 

24.0 0.027 0.027 0.027 -0.726 -0.726 -10.69 -10.693 0 <1e-5 

25.2 0.002 0.002 0.002 -0.622 -0.622 -1.585 -1.588 0 <1e-5 

26.4 0.019 0.019 0.019 -0.718 -0.718 -11.682 -11.687 0 <1e-5 

27.6 0.021 0.021 0.021 -0.557 -0.557 -7.882 -7.886 0 <1e-5 

28.8 0.007 0.007 0.007 0.415 0.415 0.221 0.222 0 <1e-5 

30.0 -0.003 -0.003 -0.003 -0.055 -0.055 2.077 2.077 0 <1e-5 

31.2 -0.011 -0.011 -0.011 -0.064 -0.064 2.224 2.223 0 <1e-5 

32.4 0.022 0.022 0.022 -0.164 -0.164 -10.475 -10.476 0 <1e-5 

33.6 -0.012 -0.012 -0.012 -0.105 -0.105 5.477 5.475 0 <1e-5 

34.8 0.017 0.017 0.017 0.141 0.141 -4.666 -4.666 0 <1e-5 

36.0 -0.014 -0.014 -0.014 0.078 0.078 3.034 3.034 0 <1e-5 

37.2 -0.024 -0.024 -0.024 0.227 0.227 9.390 9.391 0 <1e-5 

38.4 -0.007 -0.007 -0.007 0.114 0.114 3.637 3.638 0 <1e-5 

39.6 -0.001 -0.001 -0.001 0.036 0.036 0.690 0.690 0 <1e-5 

40.8 -0.001 -0.001 -0.001 0.017 0.017 0.217 0.217 0 <1e-5 

 *FU୧ is the unbalanced force value of the proposed analysis method. 
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Table 10. Summary results obtained from LIM and Wilson-θ methods for M3 model 

Method ̈ݔ௠௔௫ 
(in/sec2) 

 ௠௔௫ݔ̇
(in/sec) 

 ௠௔௫ݔ
(in) 

Analysis time  
(sec) # of iterations Time step ℎ 

(sec) 

Wilson-θ ቂ4.014
5.000ቃ ቂ1.918

2.455ቃ ቂ1.3143
2.5848ቃ 0.003 1 0.0242 

LIM ቂ4.017
5.000ቃ ቂ1.913

2.482ቃ ቂ1.3176
2.5848ቃ 0.005 2 0.0242 

 

 
Fig. 8. Response time-histories for M3 model. The analysis time step is ℎ = 0.02416 sec. 

 
Using the structural dynamics fundamentals, 

the mass (m), damping (c), and stiffness (k) 
matrices of the M3 model are computed as 
follows: 
 
[݉] = ൤݉ଵ 0

0 ݉ଶ
൨ = ቂ1 0

0 2ቃ .݌݅݇  ଶ/݅݊ (43)ܿ݁ݏ

[ܿ] = ቂܿଵ + ܿ −ܿ
−ܿ ܿଶ + ܿቃ = ቂ 0.36 −0.18

−0.18 0.18 ቃ (44) 

 

[݇] = ൤݇ଵ + ݇ −݇
−݇ ݇ଶ + ݇൨ = ቂ 6 −2

−2 8 ቃ  (45)  ݊݅/݌݅݇

 
The system starts vibration from zero initial 

conditions. Forced vibration is then generated by 
the external load of: 
 

{(ݐ)ܨ} = ൜ܨଵ(ݐ)
ൠ(ݐ)ଶܨ = ቄ 0

10ቅ (46) ݌݅݇

 
According to the classic relations in structural 

dynamics, the natural periods for the first and 
second modes of vibration for the M3 model are 
determined as ଵܶ = and ଶܶ ܿ݁ݏ 3.475 =
 respectively. One percent of the ,ܿ݁ݏ 2.4216 
minimum periods (i.e., ℎ = 0.01 ௠ܶ௜௡ =
 is then assumed as the time (ܿ݁ݏ 0.02416
increment for the current dynamic analyses. Fig. 8 
compares time histories estimated by LIM with 

those given by the Wilson-θ method. High 
coincidence is evident between the results and 
those given by the Wilson-θ method. Small errors 
with the proposed method clearly indicate that 
LIM can satisfactorily estimate the response of 
elastic MDOF systems subjected to external 
dynamic loads. 

Table 10 summarizes the results to transmit a 
sense of efficiency and precision level of two 
methods.LIM is not as fast as Wilson-θ method; but 
it works precisely enough to deal with linear 
MDOF systems. Detailed comparison is possible 
through the time histories reported in Tables 11 
and 12. According to Tables 11 and 12, the 
response time-histories from LIM and Wilson-θ 
methods are almost the same. 

3.3. Numerical analysis of nonlinear SDOF 
system 

In this example, the performance of the 
proposed procedure is evaluated for the nonlinear 
M4 and M5 SDOF models. The response of the 
models is determined, whereas a nonlinear 
behavior of the force-deformation is included. An 
elastic-perfectly-plastic behavior is assumed for 
the resisting force component (see Fig. 9). 
Maximum value of the forces (denoted by ௢݂ =
௘,௠௔௫ݔ݇  in technical context (Chopra, 2012)) for 
M4 and M5 models are computed as 424.47 kips 
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and 314.27 kips, respectively. It is noted that 
௘,௠௔௫ݔ  is the maximum displacement of the system 
which has linear resisting force in its spring 
component. Its value is extracted from the analysis 
results of M1 and M2 models. The yielding forces 
of the M4 and M5 models are assumed half of the 
corresponding maximum elastic force, i.e., 212.24 
kips and 157.13 kips for M4 and M5 models, 
respectively. 

Due to the inelastic behavior of the system, the 
seismic response of M4 and M5 models cannot be 
estimated by Duhamel integration because this 
procedure is only limited to the linear systems for 
which the superposition rule is valid. Thus, the 
robust nonlinear Newmark-β approach is used in 
this study to assess the performance of LIM for the 
nonlinear SDOF systems. Figs. 10 and 11 compare 
the response time-histories obtained from LIM 
with those given by the nonlinear Newmark-β 
method for the M4 and M5 models, respectively. 
Tables 13 and 14 also compare the peaks obtained 

from LIM with those from Duhamel and Newmark-
β approaches. 
 

 
Fig. 9. The nonlinear force-deformation behavior 

of spring in M4 and M5 models. 

 
 

 
Table 11. Results obtained from LIM and Wilson-θ methods for DOF = 1 of M3 model. The analysis time step is 

ℎ =  .ܿ݁ݏ 0.02416
௜ݐ  

(sec) 
Displacement ݔ௜  (݅݊) Velocity ̇ݔ௜(݅݊/ܿ݁ݏ) Acceleration ̈ݔ௜  Error (ଶܿ݁ݏ/݊݅) 
Wilson-θ LIM Wilson-θ LIM Wilson-θ LIM UF of LIM 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 <1e-5 
0.194 0.002 0.002 0.028 0.028 0.334 0.333 <1e-5 
0.387 0.016 0.016 0.142 0.142 0.865 0.866 <1e-5 
0.581 0.064 0.064 0.362 0.362 1.375 1.377 <1e-5 
0.775 0.162 0.162 0.659 0.66 1.638 1.640 <1e-5 
0.969 0.320 0.320 0.969 0.970 1.49 1.492 <1e-5 
1.162 0.533 0.533 1.206 1.207 0.879 0.879 <1e-5 
1.356 0.777 0.777 1.285 1.285 -0.118 -0.119 <1e-5 
1.550 1.016 1.017 1.148 1.148 -1.309 -1.313 <1e-5 
1.744 1.207 1.207 0.782 0.781 -2.436 -2.441 <1e-5 
1.937 1.307 1.307 0.225 0.224 -3.233 -3.238 <1e-5 
2.131 1.287 1.287 -0.436 -0.438 -3.493 -3.496 <1e-5 
2.325 1.138 1.138 -1.086 -1.089 -3.117 -3.118 <1e-5 
2.518 0.875 0.874 -1.604 -1.607 -2.14 -2.137 <1e-5 
2.712 0.532 0.531 -1.887 -1.888 -0.724 -0.718 <1e-5 
2.906 0.163 0.162 -1.873 -1.873 0.876 0.884 <1e-5 
3.100 -0.174 -0.175 -1.555 -1.553 2.365 2.372 <1e-5 
3.293 -0.423 -0.424 -0.982 -0.979 3.467 3.473 <1e-5 
3.487 -0.544 -0.544 -0.249 -0.246 3.988 3.991 <1e-5 
3.681 -0.517 -0.517 0.520 0.523 3.843 3.842 <1e-5 
3.875 -0.348 -0.347 1.199 1.202 3.075 3.071 <1e-5 
4.068 -0.066 -0.064 1.681 1.683 1.838 1.831 <1e-5 
4.262 0.286 0.287 1.895 1.896 0.362 0.353 <1e-5 
4.456 0.650 0.652 1.822 1.821 -1.097 -1.105 <1e-5 
4.649 0.975 0.976 1.487 1.485 -2.302 -2.308 <1e-5 
4.843 1.214 1.214 0.958 0.955 -3.081 -3.084 <1e-5 
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Fig. 10. Response time-histories for M3 model under El Centro ground motion record. The analysis time 
step is ℎ = ݁ݏ 0.002 .ܿ 

 
Table 12. Results obtained from LIM and Wilson-θ methods for DOF = 2 of M3 model. The analysis time step is 

ℎ = 0.02416 sec. 

௜ݐ  
(sec) 

Displacement ݔ௜  (݅݊) Velocity ̇ݔ௜(݅݊/ܿ݁ݏ) Acceleration ̈ݔ௜  Error (ଶܿ݁ݏ/݊݅) 
Wilson-θ LIM Wilson-θ LIM Wilson-θ LIM UF of LIM 

0.000 0.000 0.000 0.000 0.000 5.000 5.000 <1e-5 
0.194 0.092 0.092 0.936 0.936 4.549 4.551 <1e-5 
0.387 0.353 0.353 1.721 1.722 3.461 3.463 <1e-5 
0.581 0.742 0.742 2.248 2.249 1.925 1.925 <1e-5 
0.775 1.203 1.203 2.453 2.454 0.189 0.188 <1e-5 
0.969 1.671 1.671 2.325 2.325 -1.485 -1.487 <1e-5 
1.162 2.084 2.085 1.897 1.897 -2.865 -2.868 <1e-5 
1.356 2.392 2.392 1.245 1.245 -3.783 -3.786 <1e-5 
1.550 2.559 2.559 0.467 0.466 -4.155 -4.157 <1e-5 
1.744 2.571 2.571 -0.329 -0.33 -3.977 -3.978 <1e-5 
1.937 2.437 2.436 -1.043 -1.044 -3.324 -3.324 <1e-5 
2.131 2.178 2.177 -1.594 -1.595 -2.320 -2.319 <1e-5 
2.325 1.833 1.832 -1.929 -1.930 -1.118 -1.116 <1e-5 
2.518 1.446 1.446 -2.024 -2.025 0.127 0.129 <1e-5 
2.712 1.064 1.063 -1.886 -1.886 1.275 1.278 <1e-5 
2.906 0.729 0.728 -1.544 -1.543 2.217 2.219 <1e-5 
3.100 0.476 0.475 -1.046 -1.044 2.875 2.877 <1e-5 
3.293 0.330 0.330 -0.451 -0.449 3.208 3.21 <1e-5 
3.487 0.303 0.303 0.175 0.177 3.203 3.204 <1e-5 
3.681 0.396 0.396 0.769 0.771 2.876 2.876 <1e-5 
3.875 0.595 0.596 1.271 1.273 2.263 2.262 <1e-5 
4.068 0.879 0.88 1.631 1.633 1.422 1.420 <1e-5 
4.262 1.216 1.217 1.812 1.813 0.430 0.427 <1e-5 
4.456 1.568 1.570 1.794 1.794 -0.62 -0.624 <1e-5 
4.649 1.898 1.899 1.575 1.574 -1.624 -1.628 <1e-5 
4.843 2.167 2.168 1.175 1.173 -2.471 -2.476 <1e-5 
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Fig. 11. Response time-histories for M3 model under Kobe ground motion record. The analysis time step 

is ℎ =  .ܿ݁ݏ 0.002
 

Table 13. Summary results obtained from LIM and Newmark-β methods for M4 example model. 

Method ̈ݔ௠௔௫ 
(in/sec2) 

 ௠௔௫ݔ̇
(in/sec) 

 ௠௔௫ݔ
(in) 

Analysis time 
(sec) # of iterations Time step ℎ  

(sec) 
Newmark-β 310.84 22.773 1.9878 0.004 1 0.002 

LIM 310.89 22.773 1.9879 0.007 2 0.002 
 

Table 14. Summary results obtained from LIM and Newmark-β methods for M5 example model. 

Method ̈ݔ௠௔௫ 
(in/sec2) 

 ௠௔௫ݔ̇
(in/sec) 

 ௠௔௫ݔ
(in) 

Analysis time 
(sec) # of iterations Time step ℎ 

(sec) 
Newmark-β 203.09 10.619 0.6222 0.01 1 0.001 

LIM 203.09 10.619 0.6227 0.01 2 0.001 
 

Table 15. Results obtained from LIM and Newmark-β methods for M4 model under El Centro ground motion record. 
The analysis time step is ℎ =  .ܿ݁ݏ0.002

௜ݐ  
(sec) 

Displacement ݔ௜  (݅݊) Velocity ̇ݔ௜(݅݊/ܿ݁ݏ) Acceleration ̈ݔ௜  Error (ଶܿ݁ݏ/݊݅) 
Newmark-β LIM Newmark-β LIM Newmark-β LIM UF of LIM 

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 <1e-5 
1.2 -0.0850 -0.0854 -3.3581 -3.3675 -11.8757 -11.8037 <1e-5 
2.4 -1.2078 -1.2158 7.2361 7.1670 310.8477 311.3532 <1e-5 
3.6 0.3915 0.3979 0.9770 1.0389 -51.2091 -53.0413 <1e-5 
4.8 0.2059 0.1912 11.0243 10.9513 19.3249 20.8968 <1e-5 
6 -0.1548 -0.1512 -9.3317 -9.3555 -52.5345 -54.1921 <1e-5 

7.2 -1.2391 -1.2619 0.4257 0.4265 125.048 127.5409 <1e-5 
8.4 0.0119 0.0214 5.9715 6.1226 -72.9771 -75.6509 <1e-5 
9.6 -0.2991 -0.3091 -9.6541 -9.9965 -47.1958 -46.5405 <1e-5 

10.8 -0.8388 -0.8609 4.3859 4.7024 44.1273 46.3729 <1e-5 
12 -0.8386 -0.8221 8.8008 8.7344 23.9743 20.3033 <1e-5 

13.2 -0.2768 -0.2944 1.1746 1.0621 -32.2895 -30.5482 <1e-5 
14.4 -1.3430 -1.3554 -4.2643 -4.1880 127.9664 128.7883 <1e-5 
15.6 -0.3247 -0.3207 2.0107 2.0816 -40.5906 -42.3419 <1e-5 
16.8 -0.2615 -0.2725 -2.1303 -2.2621 -46.2435 -45.5329 <1e-5 
18 -0.5370 -0.5480 1.1979 1.3098 4.6152 5.1946 <1e-5 
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19.2 -0.6243 -0.6259 -1.9050 -1.9687 8.2134 7.4100 <1e-5 
20.4 -0.9466 -0.9617 1.9328 1.9718 94.6731 95.9488 <1e-5 
21.6 -0.0794 -0.074 5.2212 5.2889 -77.9880 -79.9605 <1e-5 
22.8 -0.8300 -0.8466 -2.4453 -2.6447 64.1015 65.7323 <1e-5 
24 -0.5305 -0.5376 0.4351 0.636 18.0960 18.0233 <1e-5 

25.2 0.0428 0.0447 4.0032 3.902 -76.4641 -77.8012 <1e-5 
26.4 -1.7896 -1.8149 -5.7218 -5.8211 197.2917 200.2415 <1e-5 
27.6 -0.1297 -0.1554 11.8190 12.0148 -73.9721 -74.4859 <1e-5 
28.8 -0.5220 -0.544 -7.7533 -8.0411 17.2394 16.3835 <1e-5 
30 -0.7012 -0.7464 3.5590 3.7654 27.3345 29.9178 <1e-5 

31.2 -0.2935 -0.3007 -1.1552 -1.207 -36.1145 -39.417 <1e-5 
 

Table 16. Results obtained from LIM and Newmark-β methods for M5 model under Kobe ground motion record. The 
analysis time step is ℎ = 0.001 sec. 

௜ݐ  
(sec) 

Displacement ݔ௜  (݅݊) Velocity ̇ݔ௜(݅݊/ܿ݁ݏ) Acceleration ̈ݔ௜  Error (ଶܿ݁ݏ/݊݅) 
Newmark-β LIM Newmark-β LIM Newmark-β LIM UF of LIM 

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 <1e-5 
1.2 -0.0044 -0.0044 0.0634 0.0633 2.3076 2.3075 <1e-5 
2.4 0.0834 0.0834 0.5092 0.5092 -3.8349 -3.8365 <1e-5 
3.6 -0.4315 -0.4315 -6.4858 -6.4875 139.385 139.388 <1e-5 
4.8 -0.1726 -0.1726 -1.0412 -1.0437 65.9732 65.9802 <1e-5 
6.0 0.2050 0.2050 2.2632 2.2633 -63.4683 -63.4913 <1e-5 
7.2 0.2905 0.2905 -3.2633 -3.2611 -115.644 -115.677 <1e-5 
8.4 0.1663 0.1662 6.3621 6.3616 59.2524 59.3234 <1e-5 
9.6 0.0067 0.0065 2.0974 2.0969 51.0068 51.0683 <1e-5 

10.8 0.3825 0.3825 -2.2466 -2.2443 -149.500 -149.509 <1e-5 
12.0 -0.1641 -0.1640 2.0364 2.0374 77.6630 77.6630 <1e-5 
13.2 -0.0772 -0.0771 6.2321 6.2315 73.4963 73.5237 <1e-5 
14.4 0.1795 0.1795 0.0834 0.0832 -34.1860 -34.1664 <1e-5 
15.6 0.0518 0.0519 -0.5109 -0.5108 4.2475 4.2473 <1e-5 
16.8 -0.0328 -0.0328 0.5014 0.5012 33.7307 33.7296 <1e-5 
18.0 0.0184 0.0185 1.3043 1.3041 -0.3603 -0.3544 <1e-5 
19.2 0.0555 0.0555 0.9388 0.9390 -8.6223 -8.6150 <1e-5 
20.4 0.0524 0.0525 -0.2661 -0.2660 6.7732 6.7764 <1e-5 
21.6 0.0526 0.0527 0.8213 0.8213 13.8447 13.8459 <1e-5 
22.8 0.0881 0.0881 -0.2277 -0.2277 -1.4780 -1.4786 <1e-5 
24.0 0.0845 0.0846 -0.7259 -0.7258 -10.6896 -10.6927 <1e-5 
25.2 0.0602 0.0602 -0.6220 -0.6219 -1.5850 -1.5882 <1e-5 
26.4 0.0765 0.0766 -0.7176 -0.7176 -11.6818 -11.6873 <1e-5 
27.6 0.0786 0.0787 -0.5572 -0.5571 -7.8821 -7.8856 <1e-5 
28.8 0.0653 0.0653 0.4149 0.4150 0.2215 0.2218 <1e-5 
30.0 0.0553 0.0553 -0.0547 -0.0547 2.0768 2.0767 <1e-5 
31.2 0.0464 0.0465 -0.0643 -0.0644 2.2237 2.2231 <1e-5 
32.4 0.0800 0.0801 -0.1641 -0.1641 -10.4751 -10.4761 <1e-5 
33.6 0.0459 0.0460 -0.1046 -0.1047 5.4768 5.4750 <1e-5 
34.8 0.0754 0.0754 0.1409 0.1409 -4.6664 -4.6662 <1e-5 
36.0 0.0436 0.0436 0.0779 0.0779 3.0335 3.0344 <1e-5 
37.2 0.0340 0.0341 0.2269 0.2269 9.3900 9.3908 <1e-5 
38.4 0.0509 0.0510 0.1142 0.1142 3.6368 3.6376 <1e-5 
40.8 0.0571 0.0572 0.0357 0.0357 0.6898 0.6903 <1e-5 
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A detailed comparison of results has also been 
provided in Tables 15 and 16 for M4 and M5 
models, respectively. The analysis results clearly 
show that there is a very good agreement between 
the responses obtained from LIM with that from 
nonlinear version of Newmark-β method for both 
cases. It is noted that the nonlinear LIM is easy to 
use rather than the others. In spite of linear LIM, 
nonlinear LIM is applicable to both damped and 
undamped structures. Hence, analyzing the 
undammed linear systems, which are not 
permitted by the linear LIM, can be perfectly 
treated by this algorithm 

4. Conclusions 

In this study, a novel numerical method, so-
called load impulse method (LIM), was proposed 
for estimating the dynamic response of the linear 
and nonlinear SDOF and MDOF systems. LIM is 
based on the simple concepts from dynamics and 
applied mathematics. This method estimates the 
kinematic response of the dynamic systems using 
a manipulated form of DEOM. The accuracy and 
efficiency of the proposed LIM was explored for 
several linear and nonlinear SDOF systems and a 
linear MDOF case. The analysis results clearly 
showed that the proposed method can 
satisfactorily estimate the displacement, velocity, 
and acceleration response of dynamic systems 
within almost optimal computational effort  . 

A good agreement between the solution from 
LIM and conventional methods such as Duhamel, 
Newmark-β, and Wilson-θ provide evidence that 
the proposed method is efficient and accurate 
enough. The differences between the results 
obtained from LIM and other methods were 
almost insignificant. Hence, the proposed LIM 
procedure can be identified as a reliable analysis 
tool for estimating the dynamic response of 
structural systems. In summary, the main 
advantages of the proposed LIM are: (1) it can be 
generally used for estimating the dynamic 
response of linear and nonlinear SDOF models, as 
well as MDOF systems subjected to any arbitrary 
dynamic load. (2) It has a user-friendly 
programming pattern. (3) The estimation errors 
from the proposed method are not accumulated in 
the next instances. Further studies on the 
development of the method for estimating the 
seismic response of undamped linear and 
nonlinear MDOF is still underway. 
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