| تعداد نشریات | 45 |
| تعداد شمارهها | 1,416 |
| تعداد مقالات | 17,490 |
| تعداد مشاهده مقاله | 56,484,847 |
| تعداد دریافت فایل اصل مقاله | 18,742,396 |
Extending a new two-grid waveform relaxation on a spatial finite element discretization | ||
| Computational Methods for Differential Equations | ||
| مقاله 15، دوره 9، شماره 4، دی 2021، صفحه 1148-1162 اصل مقاله (177.74 K) | ||
| نوع مقاله: Research Paper | ||
| شناسه دیجیتال (DOI): 10.22034/cmde.2020.37349.1653 | ||
| نویسندگان | ||
| Noora Habibi* ؛ Ali Mesforush | ||
| Faculty of Applied Mathematics, Shahrood University Of Technology, P.O. Box 3619995161 Shahrood, Iran. | ||
| چکیده | ||
| In this work, a new two-grid method presented for the elliptic partial differential equations is generalized to the time-dependent linear parabolic partial differential equations. The new two-grid waveform relaxation method uses the numerical method of lines, replacing any spatial derivative by a discrete formula, obtained here by the finite element method. A convergence analysis in terms of the spectral radius of the corresponding two-grid waveform relaxation operator is also developed. Moreover, the efficiency of the presented method and its analysis are tested, applying the twodimensional heat equation. | ||
| کلیدواژهها | ||
| Waveform relaxation method؛ Finite element method؛ Multigrid acceleration | ||
| مراجع | ||
| ||
|
آمار تعداد مشاهده مقاله: 589 تعداد دریافت فایل اصل مقاله: 527 |
||