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Abstract

The Black-Scholes equation is one of the most important mathematical models in
option pricing theory, but this model is far from market realities and cannot show
memory effect in the financial market. This paper investigates an American option
based on a time-fractional Black-Scholes equation under the constant elasticity of
variance (CEV) model, which parameters of interest rate and dividend yield sup-
posed as deterministic functions of time, and the price change of the underlying
asset follows a fractal transmission system. This model does not have a closed-form
solution; hence, we numerically price the American option by using a compact differ-
ence scheme. Also, we compare the time-fractional Black-Scholes equation under the
CEV model with its generalized Black-Scholes model as « = 1 and 8 = 0. Moreover,
we demonstrate that the introduced difference scheme is unconditionally stable and
convergent using Fourier analysis. The numerical examples illustrate the efficiency
and accuracy of the introduced difference scheme.
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1. INTRODUCTION

According to exercise time, we have two types of options: American and European
options. An American option can be exercised at any time before the maturity date,
but a European option can only be exercised at the maturity date. The American
option must be worth at least as much as its European equivalent and it can never be
worth less than its payoff. This option is more valuable than the European option,
because investors have the freedom to exercise their option at any time during the
contract while holder of European option can only exercise at maturity.

The pricing problem of American options is a very common class of optimal-
stopping problems that leads to a free boundary value problem. In 1965, McKean [31]
was the first person who worked on the American options and derived a free-boundary
problem to determine the price of American options. In 1976, Moerbeke [36] further
studied on the properties of the optimal exercise boundary and extended its analysis.
Then, numerical methods for solving the free boundary problem are developed by
Brennan and Schwartz (in 1977) [4], Schwartz (in 1977) [42] and Courtadon (in 1982)

Analytical solutions of European options can easily be found, while there exists
no exact solution for the American options, because its price depends on the history
of the underlying asset price and its present value. There are various numerical
methods to obtain an optimal solution of the free boundary problem, that one of the
most common methods is binomial methods. Also, Muthuraman [38], Chockalingam,
and Muthuraman [8] used the moving boundary approach to price American option.
Chen et al. [6] introduced a predictor-corrector approach based on the spectral-
collocation method to price the American options under the finite moment log-stable
model. Moradipour and Yousefi used collocation methods to solve the Black-Scholes
equation for American option pricing [37].

The classical Black-Scholes model is under some restrictive assumptions that it
makes to weaken. Hence, some developed models are required, such as the fractional
Black-Scholes model [17, 19, 32, 51], the Black-Scholes model with the transaction
costs [27, 44, 47], the stochastic volatility model [18, 30], and the jump-diffusion
model [22, 35]. The classical Black-Scholes models cannot show memory effect in
financial systems as well. In the last decade, the fractional Black-Scholes models are
used to describe the effect of trend and noise memory in financial pricing. Li et al.
[25] priced the European option based on the fractional order stochastic differential
equation model and derived the trend memory in stock price process when the Hurst
index is between 0.5 and 1. Moreover, they presented a new approach in option
pricing that it leads to a better result than the classic model and stochastic model
with fractional Brownian motion when the stock prices are simulated by Monte Carlo
simulation. Liu and Chang [27] presented a formula for European option pricing with
transaction costs based on the fractional Black-Scholes model and showed that the
price of the European option decreases with the increase of the Hurst index. Zhang et
al. [52] investigated the tempered fractional Black-Scholes equation with the numer-
ical simulation for pricing of a European double barrier option under three models
of Finite Moment Log Stable, KoBoL, and CGMY. Mehrdoust et al. [34] considered
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the mixed fractional Heston model to show long-range dependence and exhibited that
the Euler discretization method on this model has strong convergence. Also, they
estimated the American put option price under this model. Besides, other classes of
fractional Black-Scholes equations are introduced by Jumarie [20] and Farhadi et al.
[15].

In this paper, we consider the time-fractional Black-Scholes equation to price the
American call options whose parameters: interest rate, dividend yield, and volatility
are as functions, while they are considered constant in the classical models, and these
assumptions of the problem are closer to the actual model of the market. In many
markets, stock price volatility is increasing when the stock price is decreasing. For
modeling this phenomenon, we cannot use the classical Black-Scholes model and will
have to use the generalized models. Including these models: local volatility models
[16] and stochastic volatility models [43]. One of the most famous of these models is
the CEV model that was introduced for the first time by Cox [10] in 1975 to record
the inverse relationship between stock prices and their volatility. The volatility of
this model without introducing any additional random process is a function of the
stock price and two parameters of S and ¢ that are called elasticity of volatility and
scale parameter fixing the initial instantaneous volatility, respectively. An important
parameter of this model is the elasticity of volatility that controls the relationship
between volatility and asset price. This model has been widely used in many areas,
including: determining the value of American options [1, 48, 49, 53], Asian options
[23, 34], Barrier options [28, 46], and Lookback options [3, 13, 21]. Since the closed-
form solution does not exist to price the American option, our main aim of this
paper is to obtain an American option price under the CEV model with a compact
difference scheme. In the following, we investigate the stability and convergence of
the introduced scheme. Staelen and Hendy [14] have already used this scheme to price
the double barrier options for time-fractional Black-Scholes model whose parameters
are constant.

The main body of this paper is organized as follows: In section 2, we formulate
time-fractional Black-Scholes equation under the CEV model for pricing American
option. In section 3, we construct the compact difference scheme to price the American
option numerically. In section 4, solvability, unconditionally stability and convergence
of introduced difference scheme are illustrated using Fourier analysis. In section 5,
numerical examples demonstrate the efficiency of compact difference scheme to solve
time-fractional Black-Scholes equation with time-dependent parameters. Finally, the
paper ends with remarks and conclusions.

2. AMERICAN OPTION PRICING MODEL

In this paper, the underlying asset price is considered under CEV model as follows
(see [11])

dS; = (r(t) — D(t)) Sedt + 657 T dw,, (2.1)

where functions r(t) and D(t) are the risk-free interest rate and dividend yield, re-

spectively. W; is standard Brownian motion, dS; is the change in the stock price S
over the short increment of time dt, also, § and § (6 = 005, A ) are positive constants.
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Noticing that in the case of 8 > 0, the local volatility function, o(S) = 6%, does
not remain bounded as S — 4oco0. Therefore, we consider 5 < 0 that o(S) remains
bounded and decreases as the asset price increases. In particular, when 5 = 0 the
volatility o(S) = 65° is constant and the CEV model (2.1) turns into the lognor-
mal diffusion model which is the generalized Black-Scholes model [2]. Otherwise, the
following partial differential equation will be obtained using the It6 Lemma

aC(S,t) t) 1 d%2C(S,t) aC(S,t) B
o 2525” 5oz (r(t) = D(1)) S—= = r(t)C(S,1) = 0,

which C(S,t) is the value of the American call option with asset price S; in the
moment t. Under this assumption that the price change of the underlymg follows a
fractal transmission system, we can replace the time derivative 2 B C with the fractional

derivative %tf (see, e.g., [26, 7]) as follows
DC(S,t) | 1 5 0p420%C(S,t) oC(S,t)
gl 2 g2t D —0, (22
5o + 26 S 552 + (r(t) (t) S———= 55 r(t)C(S,t) =0, (2.2)

where %‘:g is the modified right Riemann-Liouville fractional derivative and is defined
as

T C(8,£)-C(8,T)
oocs,y | el CEREREd 0<a<,

ote aC(S,t)
ot

) a=1.

With assumption, diffusion of the option price depends on the history of the time to
maturity. By using change variable 7 =T — ¢ and V(S,7) = C(S,T — 1) = C(S, 1),
we turn backward problem to forward problem and show the relationship 8(,;5 with
the Caputo fractional derivative. We calculate as follow

e [ s -vis0
et [ S,
Rty R

Furthermore, right side of (2.3) is definition of the left-hand side Caputo fractional
as follows [40]

C ma . 1 T 1 9V(S,Q)
SV = 5y ), Gmarae
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Thus,
9°C(S Y _ _¢pay(s, 1), (2.4)
ot
Due to the (2.2), (2.4), 2 BS = gg nd gs(i = gSZ the estimation of American call
option can be formulated as a time-fractional free boundary problem:
v ov
C nHao 2qQ2B8+27 ¥ _ -
0<7<T, 0<S<Sf(7'),
V(S5,0) = max(S — K, 0), )
V(0,7) =0,
V(Sf(7),7) = 5¢(7) — K,

=1, (2.9)

where K is ”exercise price” or ”strike price” and T is ”expiration date” or "maturity
date”.

3. COMPACT DIFFERENCE SCHEME

In this section, we derive a numerical solution for problem (2.5) by using compact
difference scheme. At first, we define following uniform time and space mesh for any
positive integers M and N (Spax is a sufficiently large number)

Ar=—, 7, =nA1, n=0,1,..., M,

N

AS =220 5, =4AS, j=0,1,...,N.

N
By using above uniform mesh, we can formulate time-fractional derivative § D"‘V(S ,T)
of problem (2.5) at point (S;, 7,) with notations V* = V(S;,7,) (j =0,1,...,N;n =
0,1...,M) as
G DIV (S, ) =0 i (V) H = VIR 1O (A7), (3.1)
k=1
with
1 1
P T T2 —a) Ar
and approximate spatial derivatives based on Taylor expansion of V' € C*(0, +-00) as
follows

Y=k = (k-1 k=1,...,n,

V(Sj,’l’n) _ V(Sj+1,’7’n) — V(ijl, Tn) _A52 83V(Sj, Tn)

oS 2AS 6 083
=05V (S5,mn)

(3.2a)
+0 (ASY),
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82V(Sj,7'n) . V(Sj_l, Tn) — 2V(Sj,7’n) + V(Sj_H, Tn)
052 AS2
=62V (S;,m) (32b)
AS2 V(S )

AS*).
o5t OB
By substituting (3.2a) and (3.2b) in (2.5) at grid point (S;, 7,), we obtain

aS?P 0LV (S5, 70) + bS5V (S), )

n ASQ 25+284V(S]‘,Tn)

=g (oS

9(S5,7) =§ DIV (Sj,70) + cnV (), ),
52

- Pj”l = g(Sjan)7

3 .
+ 2bn5ja‘;(?3j“)) +0 (ASY),

(3.3)
r(I' —7)—D(T —1), c(1)
Also, from (2.5), (3.2a) and (3.2b), we have

63V(Sj, Tn)
053

=r(T—71).

26+2 . 25
=- Ba 85272 [9(S4,a) = buS;0sV (S5, 7))

1 o5 3.4

+ asj 2p=2 [JSg(SjaTn) - bn(SSV(Sj:Tn) - bnSjag'V(Sjan)] ( )
+0 (AS?),

and

84‘/(5'77-71) 26+2 —28—-4 bn —28
= g 268+ 3+ —5; }

a

1 _op_ bn -
x [g(Sjan) - bnSj(sSV(SﬁTn)] - ES] 203 |:4(6 + 1) + ;SJ 2

(3.5)
X [659(S},Tn) = bndsV (Sj, ) = bnS;05V (S;,7n)]
_ ES,*?B*Q

5] [629(S;, ) — 26,68V (S, 7,)] + O (AS?).
Now, we substitute (3.4) and (3.5) in P}

. (B+1) bn o—28
Pr = 657 AS? 25+3—;Sj 9(S;,7n)

AS* [ AB+1) | by ap AS?

+ 85 { Pl Dng 1] 059(Sj: ) + S2-039(55, )
J

bn (28 +1)

b
2| _o9pn n o—2p .
125, AS [ 28 -2+ aSJ ](55‘/(5],7”)
b

" by
+ EASQ [45 +2— ;Sj 25} SEV (S, ) + O (AS?).

2D
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Then, we set PJ' in Eq. (3.3) and after simplification we have

b b
28+2 n oA Q2 n g-2p 2y

ba(28 41 b
+ {bnsj + %ASQ (23 +2-5; 25)} 55V (S;,7n)
J
by
1+ (BGSQ NG (25 +3 - L5; 25)] 9(S;,7n)

AS? (B+1)
ST {_ S;

AS?
+ 5 959(8;,m) + O (ASY).

bn —2g_
+ ;S] 28 1] 65’9(Sj77—n)

We define the coefficients of the above equation as follows

2V (S5, 7n) + €165V (S5, 70) = 079(S;, ) + wS59(S;, )

9 (3.6)
AS 5Sg(S],Tn) + 0 (AS4)

b b
no.__ 28+2 n 2 n o—28
7= a8 - JEAS (45+2a s; >

n .__ bn(2ﬂ + 1) 2 bn —2p8

€ = baS; + e A (2642 - 2 ),
no_ o BED 2 bn (26

0 = 1+ S A" (284328,
o AS? 4(B+1) | by q—25-1

AT (_ s, Ta% ) ’

then, insert ¢(S;,7,) in it

58V (i, ) + E105V (S5, 70) = 07 [§ DIV (S, 70) + eV (Sj, )]

AS?

+ [w?% + 5 5?9} [OCDf\/(Sj,Tn) + eV (S, )] + O (AS4) .

Now, substitute 62V (S;,7,), dsV(S;,7,) and (3.1) in (3.6)
Vi =207 ¢ v, Ve

n
Jj+1 +&n Jj+1 Jj—1
A52 J

2A8
= [@Z% (vph Vj”_k)+CnV(5j7Tn)]

AS? - _ -
+ [wyés + 45 53} [gozipk (VP — VR e,V | + Ry,
k=1

(e
BE
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where the evaluation R} holds in |R}| < C (A727> + AS*). Again, by substituting
62V (S;,7,) and 05V (S;,7,) on the right hand side above formula and rearranging,
we obtain

— +

i 3 wy 1 "
{ASQ 5a5 T aag Pt e - pletea) Vi,

1 n
A5z toag TaagP el —plet C")} Vit

— _9?90‘/]'”71 + ey(pzwk (ijnkarl _ ijnfk)
k=2

w? _ e

- QAJS%" (Vﬂrll - ijll)

w? n
J —k+1 —k+1 —k —k
+oag? O v (Vi v vk v
k=2

1 n—1 n—1 n—1
- e (G -2 Vi

1 & _ _ _ _
e Do (Vi oy ke v v
k=2

+ 2V 7k - Vigk) 4 Ry

Finally, with eliminating R and rearranging, we get the following compact difference
scheme

| Agz T CnY + (o + cn) (0] _6) V;
uoS i o
* {ASQ *oas ~telGag T )| Vi
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n—1
=0y [Z ki1 — ) VIE =, VP

(0
w[ e =) (V3 = 7)o (P20 - 721

_|_

. (ml vn) (V5 =207 + 775)

k=

—¥n (‘71‘071 —2VP + ‘7go+1)

where V is the exact solution of the compact difference scheme and V is the exact
solution of the differential equation.
An index J(7,) (for n =0,1,..., M) is found such that (similar to [53])

02V (S, ) OV (S;,7n)
2 g28+2 J _ . J
6 S 552 + (r(1n) — D(m0)) S; 5

—1(1n)V (S, Tn) — D}V (S;, 1) =0,
where V (S}, 7,) > max(S; — K,0) for j =0,1,...,J(7,), and

a V(S >Tn) aV(S,Tn)
28+2 J _ : Iy nJ
652 + (T(Tn) D(Tn)) SJ EXS

— (1) V (S}, 7n) 70 D2V (S;, 1) <0,

where V(S;,7,) = max(S; — K,0) for j = J(r,) +1,J(7,) + 2,...,N. Therefore,
American call option prices are obtained from (3.8) for j = 0,1,...,J(7,) and are
equal S; — K for j = J(1,) +1,...,N.

528

4. STABILITY AND CONVERGENCE ANALYSIS

In this section, we investigate that the compact difference scheme is solvable, un-
conditionally stable and convergent.

4.1. Solvability.
Theorem 4.1. The compact difference scheme (3.8) has a unique solution.

Proof. Matrix form of compact difference scheme (3.8) can be briefly written as
AV = dn—1, where d,_1 depends only ‘7"‘1, 17"_2, ... VO The tridiagonal
coefficient matrix A" = (a;;) from compact difference scheme (3.8) is strictly diago-
nally dominant since |af| > 37, |a”| where

n| __ 27@ n n 1
|ai;| = AS2 +cnli" + (o + cn)(0; 6)’
Z|a”|7A5276 90+Cn) n:1,2,...,M.

J#i
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For each n, the coefficient matrix A™ is nonsingular, so the compact difference scheme
(3.8) is uniquely solvable. O

4.2. Stability. In this part, we prove that the compact difference scheme (3.8) is un-
conditionally stable using the Fourier analysis [45, 12, 24]. Suppose V" be a numerical
solution of compact difference scheme (3.8). Let

=V V8 j=01,...,N; n=01,.., M,

then, £ satisfies in the following equations

w8 wi 1] .
{Asz a5 Tt ealGg T )]s

2% L .gn gn
— | agz Ty +(0+en) (0] —

oS wi L] m
+{As2 oag ~Wrellgagt )| sn

=07y [Z Y1 — -7k - ¢n€?]
—1

n

2AJS [ wk+1 ) (6314:1}C - ;l ) wn ( ]+1 — 52_1)]

-1 (4.1)
L - n
+15 (Yra1 — ¥r) (€525 — 25777 +70F)
k=1
-2+ )|,
and €7 = Eg(n)ﬂ = .=c% =0.

Now, we define the following grid function
e, Se(S-5.9+5],
e"(8) =19 0, Se[0,5°]U(Sstrmi1 — 5 Sumr1 + 5
U+ U (Smax — 85 Sna]

and make a Fourier series extension for it with the period L = Sy ax as follows

= 278
Yoottt (i2=-1), n=0,1,...,M,

j=—o00

:i/oLE (S)e

2D
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t
We let €™ = (s?, Ehy.n. ,5’}(m)> , and define the following norm

J(Tn)

Il = 3, as ey = [(E@Pas = 1), n=01...

In addition, by using the Parseval equality

le"(S)|I72 = L Z <P, n=0,1,...,M,
j=—00
we obtain
J(Tn)
le™ |5 = ZASIs"I =L Z <P, n=0,1,...,M.
]—700

533

(4.2)

According to the above analysis and S; = jAS, we assume that the solution of (3.8)

has the form as follows

27l
"—c"e“”AS q:l leZ.

With substituting the above formula into (4.1), we obtain

’YJL _ 5” w;l 1 n _—iqgAS
{ASQ a5 TPt ellgag )]
- [Asg a4 (9 + ) (07 — 6)] ‘
nyn §Jn _ wn 1 n iqgAS
* {ASQ aag ~ (P elgRg T og)|ste
n—1
=03 [Z (Vrt1 — i) " F = TﬁnCO]
1

n—1
w’ ‘ |
o 2AS Y [ Z (Vr+1 — V) S (e’qAS — e*lqAS)

k=1

_ wngo (eiqAS _ eiqAS)]

z_: ¢k+1 n k (e—iqAS —24 eiqAS)
k=1

o ¢n§0 (e—iqAS —24+ eiqAS’) ‘| )
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By using sin%#) =

1 (€485 — 2 4+ ¢7%A5) | the above relation reduces to

47] 1 02 qAS n

[ ( NE + = ( + cn)) sin (T) —(p+ ZCn)Hj
gn n
+1 (AS (o + Cn)AS) Sm(qAS)}

— |pn wy P 2, qAS
= [9 o+i Sgpbm(qAS) 3 sin?(——— 5 )}

[Z (Y1 — F — thn ]

k=
This yields

:{awﬂ“’" (gAS) — £ sin?(15> S>]/

Asgosm 3
477 90 + Cn : 2 QAS n
{(ASQ+ 3 >Sln ( 9 )7(90+20n)0j
3 wj AS (4.3)
+7’ AS (S0+Cn)AS> Sln<q >:|
n—1
X (Vg1 — i) S8 = c”
k=1
Lemma 4.2. The coefficients v, satisfy
(M) ¥, >0, n=1,2,....
(I) 1 =91 > 2 > ... > Yny1, Ynt1 — 0, as n— +oo.
(D) 35—y (k= Pry1) + Yngr = 1.
Proof. (I)~(III) are clearly established. O
Lemma 4.3. The following inequality is established
n wj @2, qAS ]
H& o+ Scpsm(qAS) 3 sin? (——— 3 )/
7 ot . 5, qAS n
[<_A5’2 T )Sm (75) = (p+ 2c0)0;
5 v A9)|| <1
+Z AS (SO—’_C’H,)AS Sln(q ) _
Proof. See [14]. O

Lemma 4.4. Suppose that <" (n = 1,2,--- ,N) is the solutions of (4.3), we have
"] < [<°].

[c ]

EE
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Proof. We prove it by using the mathematical induction. For n = 1, (4.3) becomes
n

1_ n Wy e 9 qAS Y
S —{(0 <p+zASgpsm(qAS) 3s1 ( 5 ))g /

[<_ASQ+ 3 )sm( 5 ) — (¢ +2¢,)0]

n n

+i 5 - (et gy )sin(eas) .

Noticing that 17 = 1, according to Lemma 4.3, ‘gl‘ < ’§0|. Suppose that ‘g

k=23,...,n—1, and prove [¢"| < ’gol. By applying Lemma 4.2, Lemma 4.3 and
the relation (4.3) for n > 2, we get

i _|[gn wy ¢ .2 qAS
1=+ i esinteas) - £ 135

4" ©+cn\ . 9,9AS n
(_Asj’2 +— >sm (T) — (¢ + 2¢n)0;

+1 <§; (¢+cn)A;> sm(qAS)”
1

n

X (Vg1 — Vi) S 7 — yc”
=1
- '(/Jng

=1

—1
Z (Y1 = Pr) " | + b |0
=1
n—1

Z (Y — Yre1) [$"7F] 4 n |

< <Z (Yr — Yrr1) ‘H/Jn) <) = [<°],

k=1
thus [¢"] < |§0’. The proof is finished. O

Theorem 4.5. The compact difference scheme (3.8) is unconditionally stable.

Proof. According to Lemma 4.4 and formula (4.2), we derive

+o0 +o00o
=2 S P <L Y 9 =0

=0 j==o0
This yields |e™]|, < HeOHZ forn =1,2,..., M. Thus, the compact difference scheme
(3.8) is unconditionally stable. O

(e
BE
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4.3. Convergence. Now, we investigate the convergence of the compact difference
scheme (3.8). We suppose that V" is the exact solution of (2.5) and V" is the exact
solution of (3.8). Let

=VP-Vr, j=01,...,N; n=01,...,M,

(4.4)
RP =0 (A7~ + ASY).
Subtracting (3.7) from (3.8) achieve
o8 wi 1] on
{ASQ sa5 Tt ellgag — )| Fia
{ASJQ + el + (¢ +cn)(0] — 6)] E;
oS wi 1]
* {ASQ a5~ WHallgag T )| Fin
=05 [Z (Vrr1 — p) B — 9o Y
k=
QAJS [ (W1 — n) (BP ) — BP2F) —ton (E)y — EJ_y)
b (4.5)
+ 5 12 (Y41 —on) (B} — 2B F + E}F)

k=

=

+ R'n,

—tn (Ej-1 —2E] + E) i

with the initial-boundary conditions
E}=0, j=0,1,...,N,

By =E3, = =Ey=0 n=01,..,M.

Similar to the stability proof as above, we define the following grid functions

E?, Se (S; - &2, 8; + 471,
E"(8) =1 0. S€ 0,52 USsry — 5% Surn + 5]
U U (Smax — 52, Stmax] »
and
R}, Se (Sj—£75j+§},
R"(8) =4 0, S€[0,5°]U (S5 = 5 S + 5]
U-“U(Smax—%,Smax].

2D
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Therefore, E™(S) and R™(S) have the Fourier series expansions as follow, respectively,

+oo
= 3 et

j=—o0

= Y e, (2=-1), n=01,...,M,

j=—00

where L = Sj.x and

n 1 k n i2mis n 1 k n i2mis
ﬁjzz/o E"(S)e'"17dS, v; :Z/o R"(S)e' 1

t t
Let E™ = (E{L,Eg, . ,E;L(Tn)) , Rn = ( "RY, ..., Rﬁ(m)) and define their corre-

sponding norms as follows, respectively

J(Tn) L
n n 2 n n
173 = 3 AS|Ef = [N as = B S
j=1
n=20,1,..., M,
and
2 J(Tn) 2 L 2 2
IR = Y as|ry = [R(S)ds =[RS »
j=1 0 (4.6)
n=0,1,...,M
Applying Parseval equality leads to
J(Tn)
IE™|3 = Z AS|EN® =L Z 2%, n=0,1,..., M, (4.7a)
Jj=—00
J(Tn)
|R™|3 = Z AS|RPP =1L Z Wr*, m=0,1,..., M. (4.7b)
j=—00

According to the stablhty analysis and S; = jAS, we suppose that the solution of
(4.5) has the form as follows

2ml
R"—V"e“”AS qzl leZ.

E]n _ ﬂneiquS T

9

Replacing the above relations into (4.5), we have

'y]ﬂ _ g;ﬂ w;ﬂ _i n,—iqgAS
{As2 oag Tetellgag — )| e

{ASJ*Q + el + (¢ +cn)(0] — 6)] ¢

’yj 5;1 _ w”l 1 n iqAS
* {ASQ Toas W elgag T )| e
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n—1
=0y [Z (Vrt1 = p) 9" " = wnﬁol

k=
w? n—-1 | |
ZA]S@lZ (Vg1 — Yr) (elqAS _ e—quS) gk

k=1

— Yy, iqAS _ i
1)[} (61 AS 7quS) 190]

n—1
£ _ —igAS __ iqAS\ gn—k
t13 D (k1 — ) (e 2+€%%) 9
k=1
o ¢n (e—iqAS _9 + eiqAS’) 190 U
Applying sin%#) = —1 (e85 — 2 4 ¢71155)  the above relation turns to

v 1 . 9, qAS "
[ < ASJQ (ap+cn)) SmQ(qT) — (¢ + 2¢n)0;

+i (ins (go+cn)A;) sm(qAS)} 9"

o wy qAS
_[Hj +2A—Sapsm(qAS) gsm( 5 )}

lz Ui — ) 9" = ° | 07,
k=1
in result
n_|on, o W5 ¥ .9 gAS
9 —[9 cp—l—zASgosm(qAS) 3 ? sin == 5 )]/
47j @+ . 9, qAS n
(232w oo

+1 <iS (S0+Cn)ZS> sin( qAS} kg (Vry1 — ) 9"k (4.8)

n A et 2 dAS "

+i <§S («p+cn)zg> Sln(qAS)}

Noticing that 9% = 0. From (4.4) and (4.6), we obtain (C; is constant)

IR"|l, < VNASCy (AT~ + AS*) = VLCy (AT + AS*),
n=0,1,..., M.

(4.9)

2D
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Because of the convergence of series in the right hand side of (4.7b), there is a positive
constant Cy such that

V" = ’1/]"‘ < CQAT‘Z/;’ = C’gAT|V1‘, n=12...,M. (4.10)

Lemma 4.6. The following relationship is established

A o] . 4 qAS L)
([ )

+ & (—I—c)w? 251112( AS)
AS VT A I

Lemma 4.7. Suppose that 9™ is a solution of (4.8), then there is a positive constant
C'3 such that

9" < C3(1+3AT)" v, n=1,2,..., M.

Proof. We show the proof by using the mathematical induction. From (4.8), (4.10)
and (4.6), we obtain

4y . A 2
({_ Vo et }Sing(q2s)_(@+26n)9§1>

12< 12
9 < P | (|- +

+ & (—&—c)w? 2sir12( AS)
AS W TIAS e

SOATIC2, = |9Y| < BATCs|YY| < C5(1 + 3A7T) V.

Now, we suppose |'z9k| < O3(14+3A7)F|vY, k =2,3,...,n—1. Applying (4.10), Lemma
4.3 and (4.6) into (4.8), we prove |97 < C5(1+3A7)"|v|, where C3 = max {Cs, C3},

wy gAS

|97 < ngo—i—zASgosm(qAS) 3sm( 5 )/
47 pten L o, qAS n
‘ <A52 +— )sm (T) — (o +2cp)0;

Z (Yrr1 — ox) 9"

k=1

4P ot L o, qAS n
(_AS2+ 3 )Sm( y )~ et 2t

+i i—( —|—c)w;b sin(gAS)| x
A ¥ nJAS q

+ "/

+i & —( +c)wn sin(gAS)
AS (p n AS q
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i
L

< (Y1 — V) 0% + 30"

(]

B
Il

1

i
L

(Y = rg1) [977F] 4+ 3CAT [V

E/%

k=1
n—1
<D (W = Yisn) Cs(1+3A7)" |t + Co(1+ 3A7) [
k=1
n—1
<C3(1+3A7)" vl Z (Vi — ¥rr1) + Co(1 4+ 3A7) |V
k=1

<C3(1 4 3A7)" Mt (1= ¢by) 4 Co(1 + 3AT)Yy, [V
<C3(1+3AT)" [ | (1 = b + b)) = C3(1 + 3AT)" V1.
This ends the proof. O

Theorem 4.8. Assume that V(S,7) is the exact solution of (2.5) and V(S,7) is the
exact solution of (3.8), the compact difference scheme (3.8) is convergent, and the
convergence order is O (ATQ_a + AS4).

Proof. Consider Lemma 4.7, combine (4.7a), (4.7b) and (4.9)
|E"|ly < C5(143A7)"||RY||, < C1C5VLexp(3nAT) (AT~ + AS*) .
Since nA7 < T, we derive |[E"||, < C (AT27* + AS*), where

C = 0,03V Lexp(3nAr),
This finishes the proof. O

5. NUMERICAL EXAMPLES

Now, we exhibit the accuracy of the introduced scheme with three examples for
solving the time-fractional Black-Scholes equation under CEV model in which interest
rate and dividend yield are as deterministic time-dependent parameters. We compute
the time of running the program by using CPU times of MATLAB R2015a. The CPU
times show the low volume of computation and the advantages of the introduced
scheme. Furthermore, in all three examples, we will compare the generalized Black-
Scholes model with the time-fractional Black-Scholes equation under CEV model
when o = 1 and 8 = 0. We also discuss the Greek letters A, T' and © using the
figure.

Example 5.1. Consider the time-fractional Black-Scholes Eq. (2.5) with the param-
eters: r(t) = 0.140.05e~%, D(t) = 0.03+0.001e%%1 [50], K = 50, o9 = 0.4, Sy = 50,
T=38=-05a=08 N=M=100 and Spax = 3K.

Example 5.2. Price the American call option model (2.5) with the parameters:
r(t) = 0.075 + 0.05¢ [29], D(t) = 0.05, K =50, g = 0.4, Sy =50, T =3, 3 =—-0.5,
a=0.8, N=M =100 and Spnax = 3K.

c[v)

EE



CMDE Vol. 9, No. 2, 2021, pp. 523-552 541

Example 5.3. Obtain the American call option price for model (2.5) with the pa-
rameters: r(t) = 0.1 + 0.0005¢ [39], D(t) = 0.02, K = 50, 09 = 0.4, Sp =50, T = 3,
B8=-0.5,a=08, N=M =100 and Smax = 3K.

TABLE 1. CPU time to determine option price in expiry date.

Example 1 Example 2 Example 3

N M CPU time CPU time CPU time
64 64 0.281639 s 0.286932 s 0.292268 s
128 128 1.242377 s 1.221253 s 1.203057 s
256 264 4.881068 s 4.815844 s 4.887891 s
512 512 23.071165 s 22.823704 s 23.102432 s
1024 1024 128.594945 s 130.967890 s 130.980526 s

TABLE 2. Option price for different « in expiry date.

S a=080 a=08 a=090 «o=0.95
Example 1 30 5.1104 5.3491 5.5929 5.8421
60 22.4017 22.8049 23.2154 23.6336
90 49.0168 49.2749 49.5398 49.8124
120  80.8191 80.9912 81.1681 81.3502
Example 2 30 5.0655 5.3655 5.6727 5.9873
60 21.5117 22.0903 22.6809 23.2838
90 46.7652 47.2432 47.7340 48.2382
120  76.4837 76.8334 77.1894 77.5520
Example 3 30 5.1687 5.4266 5.6891 5.9565
60 22.4865 22.9615 23.4440 23.9345
90 48.8599 49.2118 49.5711 49.9387
120  79.2868 79.5290 79.7757 80.0272

TABLE 3. Option price for different § in expiry date.

S B=-04 B=-03 B=-02 B=-01
Example I 30  4.9234 1.7464 15783 1.4180
60  22.5520  22.7105  22.8762  23.0474
90  49.3856  49.7679  50.1598  50.5572
120 81.2265  81.6356  82.0426  82.4436
Example 2 30  4.8568 4.6594 1.4723 1.2943
60  21.6257  21.7473  21.8753  22.0081
90  47.0049  47.4342  47.7789  48.1251
120  76.8457  77.2025  77.5505  77.8865
Example 3 30 4.0648 17716 1.5878 1.4126
60  22.6000  22.7194  22.8439  22.9724
90  49.1333  49.4172  49.7085  50.0039
120 79.5577  79.8313  80.1045  80.3747

We compute CPU time of Examples 5.1-5.3 for different N and M in Table 1. This
table shows that CPU time is almost 2 min 10 s for N = M = 1024. We investigate
the effect of each parameter time-fractional derivative order (), elasticity factor (8),
and initial instantaneous volatility (o¢) on the long memory in Tables 2-4. Table 2
displays that option price is increasing for o = {0.80,0.85,0.90,0.95}. Table 3 shows
that option price is both decreasing and increasing for 8 = {—0.4, —0.3,—0.2, —0.1}.
Table 4 is increasing for o¢ = {0.2,0.3,0.4,0.5}.

a0
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TABLE 4. Option price for different o in expiry date.

S 00=0.2 00=03 o090=04 o09=0.5
Example 1 30 1.6013 3.2722 5.1104 7.0233
60 18.7947 20.2931 22.4017 24.8057
90 46.5690 47.5341 49.0168 50.8966
120  78.1671 79.5494 80.8191 82.1093
Example 2 30 1.7016 3.3045 5.0655 6.9024
60 17.9890 19.4581 21.5117 23.8501
90 44.4315 45.3374 46.7652 48.5862
120 73.9721 75.2834 76.4837 77.6991
Example 3 30 1.5689 3.2812 5.1687 7.1194
60 18.7584 20.3488 22.4865 24.8718
90 46.9493 47.6299 48.8599 50.5255
120  77.5483 78.4229 79.2868 80.2690

TABLE 5. Convergence rate for different N when K = 40, oo = 0.4,
So=40,T=3,8=—-1,a=0.7 and Smax = 3K.

r(t) = 0.1+ 0.05e ¢, D(t) = 0.03 + 0.001e"-0TF
M N Error Rate CPU time
1024 64 1.5287e-05 — —
128 9.9149e-07 3.9466 551.254211 s
256 6.4936e-08 3.9325 561.611072 s
512 4.0624e-09 3.9986 597.201253 s
1024  2.4475e-10 4.0529 660.541270 s
r(¢) = 0.075 + 0.05¢, D(¢) = 0.05
M N Error Rate CPU time
1024 64 1.1963e-05 - -
128 7.7641e-07  3.9456 551.784606 s
256 5.0150e-08 3.9525 569.122115 s
512 3.2328e-09  3.9554  590.740887 s
1024 1.8889e-10 4.0972 656.945209 s
7(¢) = 0.1 + 0.0006¢, D(f) = 0.02
M N Error Rate CPU time
1024 64 6.9990e-06 — -
128 2.8956e-07 4.5952 540.760544 s
256 2.0692e-08 3.8067 550.976153 s
512 1.3045e-09 3.9875 578.041359 s
1024  7.5417e-11  4.1124 664.398942 s

The American options have no closed-form solution. Therefore, to illustrate the
fourth-order convergence rate in space numerically, we compare our solution with
the approximated solution that N and M are large enough (see [5]). We define the
discrete Maximum-norm error as

where I_/J" is the approximated solution for N = 2048 and M = 1024 and 171” is the
our solution. The convergence rate in space is obtained from following relation

N M
Rate = lo — .
2p) (BQN,M )

MM = max )V-" -Vt
0<j<N Il 7 J
0<n<M

= max max ‘VJ” - V]"
0o 0<n<M \0<j<N
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TABLE 6. Comparison of the American put option price by compact dif-
ference scheme with Zhou’s result at » = 0.05, D = 0, K = 40, Sy = 40,

T = 3, Smax = 200, N = 800 and M = 200 in expiry date.

B =0
oo = 0.1 gg = 0.2
(e} LTM FDM Compact LTM FDM Compact
1.0 1.2189 1.2362 1.2308 3.4116 3.4792 3.4741
0.9 1.1771 1.1912 1.1830 3.2651 3.3157 3.3080
0.7 1.0959 1.1028 1.0879 2.9817 3.0071 2.9927
0.4 0.9778 0.9793 0.9347 2.5770 2.5829 2.5418
0.2 0.9005 0.9002 0.8094 2.3184 2.3191 2.2341
B =-1
og = 0.1 oo = 0.2
« LTM FDM Compact LTM FDM Compact
1.0 1.1877 1.2020 1.1977 3.3325 3.3834 3.3880
0.9 1.1485 1.1604 1.1528 3.1918 3.2297 3.2300
0.7 1.0722 1.0802 1.0641 2.9208 2.9400 2.9309
0.4 0.9609 0.9657 0.9202 2.5347 2.5397 2.5048
0.2 0.8877 0.8922 0.8017 2.2876 2.2898 2.2158

TABLE 7. Comparison of the American put option price by compact dif-
ference scheme with Pun’s result at = 1, r = 0.05, D = 0, g9 = 0.4,

6 =-0.1, K =40, So =40, T =1 and Smax = 3K in expiry date.

a=1,
Pun’s result N=M=240
S BS sol. Ist-order 2nd-order RE Compact
20 19.7979 20 20 20 20
30 12.6119 11.1815 10.7256 10.7299 10.9832
40  7.98526 5.77404 5.36116 5.33151 5.4557
50 5.20209 2.84158 2.58372 2.54957 2.5448
60 3.38609 1.23602 1.18842 1.13693 1.1450

543

In Table 5, we list the error estimates and convergence rates of the introduced scheme
for three r(t) and D(t). This table shows that the obtained convergence rates sup-
port Theorem 4.8. The CPU times in this table represent the sum of the run times

associated with computing e

N.M 2N,

M

and convergence rate per run.

We can also use the introduced difference scheme to determine the American put
option price. Hence, we present two comparisons of the introduced scheme with the
results of [53] and [41] in Tables 6 and 7, respectively.
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FIGURE 1. Option price of three examples in expiry date with their payoff.

Figure 1 shows the option price of three examples in the expiry date with their
payoff. Figure 2 displays that time-fractional Black-Scholes equations under the CEV
model equal to generalized Black-Scholes model in expiry date when a = 1 and
B = 0 for all examples. The generalized Black-Scholes model of this figure with an
implicit difference scheme is described in Appendix A. Figures 3-5 illustrate the effect
of parameters «, 8, and oy on option price, respectively. Figures 6-8 represent option
price sensitivities relative to the parameters.

6. CONCLUSION

Due to the limitations of the Black-Scholes model, we need a model that is closer
to market realities and show memory effect in financial pricing. In this work, we
investigated American call option pricing based on the time-fractional Black-Scholes
equation under the CEV model with time-dependent parameters of risk-free interest
rate and dividend yield. We presented a compact difference scheme to price the
American call option as numerically. We analyzed stability and convergence of the
introduced difference scheme using Fourier analysis and showed that the introduced
scheme has the fourth-order convergence rate in space. Numerical examples express
that the time-fractional Black-Scholes equation under the CEV model coincides with
its generalized Black-Scholes equation as a = 1 and 8 = 0. Also, we observed which
American option price is increasing with respect to the time-fractional order derivative
(a) and initial instantaneous volatility (o¢), and the American option price is both

(&)
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Example 1 Example 2

Call Option
2

Call Option
3

Example 3

B
8

@ 3
3 8

Call Option
3

FIGURE 2. Comparison of generalized Black-Scholes model and time-
fractional Black-Scholes equation under CEV model in expiry date when
a=1and =0.

decreasing and increasing as elasticity factor (/) is increasing. Moreover, we discussed
the American option price sensitivities relative to the underlying asset and time to
expire. As a suggestion, we can use the introduced difference scheme of this paper to
price other options.

APPENDIX A. GENERALIZED BLACK-SCHOLES MODEL ITS DIFFERENCE SCHEME

The generalized Black-Scholes model for pricing American call option is following
form

2

80((9?715) 1 2.5'28 gég ,t) + () —D(t))Saca(g’t)

—r(t )C’(S t) = (A1)
C(S,T) = max(S — KO)
C(0,t) =0,
C(S5(t),t) = S¢(t) — K,
20(5;(0).1) _,

oS ’
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FIGURE 3. Option price based on different « in expiry date.
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FIGURE 4. Option price based on different 3 in expiry date.
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FIGURE 5. Option price based on different o in expiry date.
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FIGURE 6. American options in the Greeks A.



548 M. REZAEI MIRARKOLAEI, A. R. YAZDANIAN, S. M. MAHMOUDI, AND A. ASHRAFI
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FIGURE 7. American options in the Greeks I'.

where o is volatility of underlying asset. Using approximation derivatives,

0C(Sj,tn)  C(Sj tny1) — C(Sj,tn)

ot = AL + O (At),
9?C(Sj,t,)  C(Sj_1,tn) —2C(S;,tn) + C(Sjt1,tn)

65’]2 = : A;;Q J +O(A52)7
9C(8j,tn) _ C(Sj+1,tn) — C(Sj-1,tn) 2

a5 A5 +0 (A5,

we apply following implicit difference scheme on (A.1) as

crtt—cn Ll Cr_, —2C0 +Cy,y . ol —2crtt ot
At 2" 7 2AS2 2AS2
no__QOn 07_1+1 _ C7_l+1
_ . Jj+1 j—1 j+1 j—1
+ [ (tn) — D (tn)] S VN v
cr ot
—_r (tn) % —

The matrix form above scheme can be written as
Ancn+1 — Bncn _ Fn—i—l n > 0

(=)
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a?*lifAsqu 4AS J[T(tn)iD(tn)]7
. o? At _, At
b ?Asfgﬂf? (tn) +1,
’ ]:17 7N_1
o At At

e?_H = ITSQSJQ + ESJ [7" (tn) -D (tn)} 5

REFERENCES

L. V. Ballestra and L. Cecere, A numerical method to estimate the parameters of the CEV
model 1mplied by American option prices: FEvidence from NYSE, Chaos Soliton. Fract., 88
(2016), 100-106.

F. Black and M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ., 81
(1973), 637-659.

P. P. Boyle, Pricing lookback and barrier options under the CEV process, J. Financ. Quant.
Anal., 84 (1999), 241-264.

M. J. Brennan and E. S. Schwartz, The valuation of American put options, J. Financ., 32
(1977), 449-462.

Z. Cen and A. Le, A robust and accurate finite difference method for a generalized Black-Scholes
equation, J. Comput. Appl. Math., 235 (2011), 3728-3733.

W. Chen, X. Xu, and S. P. Zhu, A predictor-corrector approach for pricing American options
under the finite moment log-stable model, Appl. Numer. Math., 97 (2015), 15-29.

W. Chen, X. Xu, and S. P. Zhu, Analytically pricing double barrier options based on a time-
fractional Black-Scholes equation, Comput. Math. Appl., 69 (2015), 1407-1419.

A. Chockalingam and K. Muthuraman, An approzimate moving boundary method for American
option pricing, Eur. J. Oper. Res., 240 (2015), 431-438.

G. R. Courtadon, A more accurate finite difference approximation for the valuation of options,
J. Financ. Quant. Anal., 17 (1982), 697-703.

J. Cox, Notes on option pricing I: Constant elasticity of variance diffusions, Unpublished note,
Stanford University, Graduate School of Business, September 1975.

J. Cox, Notes on option pricing I: constant elasticity of variance diffusions, J. Portfolio Manage.
, 22 (1996), 15-17.

M. Cui, Compact finite difference method for the fractional diffusion equation, J. Comput.
Phys., 228 (2009), 7792-7804.

D. Davydov and V. Linetsky, Pricing and hedging path-dependent options under the CEV pro-
cess, Manage. Sci., 47 (2001), 949-965.

R. H. De Staelen and A. S. Hendy, Numerically pricing double barrier options in a time-
fractional Black-Scholes model, Comput. Math. Appl., 74 (2017), 1166-1175.

A. Farhadi, M. Salehi, and G. H. Erjaee, A new version of Black-Scholes equation presented by
time-fractional derivative, Iran. J. Sci. Technol. A, 2017.

J. Gatheral, E. P. Hsu, P. Laurence, C. Ouyang, and T. H. Wang, Asymptotics of implied
volatility in local volatility models, Math. Financ., 22 (2012), 591-620.

M. A. Ghandehari and M. Ranjbar, European option pricing of fractional Black-Scholes model
with new Lagrange multipliers, Computational Methods for Differential Equations, 2 (2014),
1-10.

C. Hull and A. D. White, The pricing of options on assets with stochastic volatilities, J. Financ.,
42 (1987), 281-300.

(&)
EE



CMDE Vol. 9, No. 2, 2021, pp. 523-552 551

(19]

20]

(21]

[22]
(23]

(24]
23]

[26]

27]
(28]
29]
(30]
(31]

(32]

(33]
(34]
(35]
(36]
(37]
(38]
(39]
[40]
[41]
(42]

(43]

G. Jumarie, Stock exchange fractional dynamics defined as fractional exponential growth driven
by Gaussian white noise. Application to fractional Black-Scholes equations, Insur. Math. Econ.,
42 (2008), 271-287.

G. Jumarie , Derivation and solutions of some fractional Black-Scholes equations in coarse-
grained space and time. Application to Mertons optimal portfolio, Comput. Math. Appl., 59
(2010), 1142-1164.

G. Kim and J. Jeon, Closed-form solutions for valuing partial lookback options with random
initiation, Financ. Res. Lett., 24 (2018), 321-327.

S. G. Kou, A jump-diffusion model for option, Manage. Sci., 48 (2002), 1086-1101.

M. K. Lee, Asymptotic approach to the pricing of geometric asian options under the CEV
model, Chaos Soliton. Fract., 91 (2016), 544-548.

C. Li and H. Ding, Higher order finite difference method for the reaction and anomalous-
diffusion equation, Appl. Math. Model., 38 (2014), 3802-3821.

Q. Li, Y. Zhou, X. Zhao, and X. Ge, Fractional order stochastic differential equation with
application in European option pricing, Discrete Dyn. Nat. Soc., 2014 (2014).

J. R. Liang, J. Wang, W. J. Zhang, W. Y. Qiu, and F. Y. Ren, The solution to a bifrac-
tional Black-Scholes-Merton differential equation, International Journal of Pure and Applied
Mathematics, 58 (2010), 99-112.

H. K. Liu and J. J. Chang, A closed-form approzimation for the fractional Black-Scholes model
with transaction costs, Comput. Math. Appl., 65 (2013), 1719-1726.

C. F. Lo and C. H. Hui, Lie-algebraic approach for pricing moving barrier options with time-
dependent parameters, J. Math. Anal. Appl., 323 (2006), 1455-1464.

C. F. Lo, H. C. Lee, and C. H. Hui, A simple approach for pricing barrier options with time-
dependent parameters, Quant. Financ., & (2003), 98-107.

O. S. Louis, Pricing stock options in a jump-diffusion model with stochastic volatility and
interest rates: applications of Fourier inversion methods, Math. Financ., 7 (1997), 413-426.
H. P. McKean Jr, A free boundary problem for the heat equation arising from a problem of
mathermatical economics, Ind. Manag. Rev., 6 (1965), 32-39.

L. Meng and M. Wang, Comparison of Black-Scholes formula with fractional Black-Scholes
formula in the foreign exchange option market with changing volatility, Asia-Pacific Financial
Markets, 17 (2010), 99-111.

F. Mehrdoust, S. Babaei, and S. Fallah, Efficient Monte Carlo option pricing under CEV model,
Commun. Stat. Simulat., 46 (2017), 2254-2266.

F. Mehrdoust, A. R. Najafi, S. Fallah, and O. Samimi, Mized fractional Heston model and the
pricing of American options, J. Comput. Appl. Math., 330 (2018), 141-154.

R. C. Merton, Option pricing when underlying stock returns are discontinuous, J. Financ. Econ.,
3 (1976), 125-144.

P. Moerbeke, On optimal stopping and free boundary problems, Arch. Ration. Mech. An., 60
(1976), 101-148.

M. Moradipour and S. A. Yousefi, Using two collocation methods to solve the Black-Scholes
partial differential equation of American options, Appl. Comput. Math., 15 (2016), 200-211.
K. Muthuraman, A moving boundary approach to American option pricing, J. Econ. Dyn.
Control, 32 (2008), 3520-3537.

M. O. Okelola, K. S. Govinder, and J. G. (’)Hara7 Solving a partial differential equation associ-
ated with the pricing of power options with time-dependent parameters, Math. Method. Appl.
Sci., 88 (2015), 2901-2910.

1. Podlubny, Fractional differential equations, Academic Press, 1999.

C. S. Pun and H. Y. Wong, CEV asymptotics of American options, J. Math. Anal. Appl., 403
(2013), 451-463.

E. Schwartz, The wvaluation of warrants: implementing a new approach, J. Financ. Econ., 4
(1977), 79-93.

Q. Shi and X. Yang, Pricing Asian options in a stochastic volatility model with jumps, Appl.
Math. Comput., 228 (2014), 411-422.

(e
BE



552

[44]

[45]
[46]

[47]

(48]
[49]

(50]

[51]

[52]

(53]

2D

M. REZAEI MIRARKOLAEI, A. R. YAZDANIAN, S. M. MAHMOUDI, AND A. ASHRAFI

L. Song, A space-time fractional derivative model for European option pricing with transaction
costs in fractal market, Chaos Soliton. Fract., 103 (2017), 123-130.

J. C. Strikwerda, Finite difference schemes and partial differential equations, Siam, 2004.

N. Thakoor, D. Y. Tangman, and M. Bhuruth, Efficient and high accuracy pricing of barrier
options under the CEV diffusion, J. Comput. Appl. Math., 259 (2014), 182-193.

J. Wang, J. R. Liang, L. J. Lv, W. Y. Qiu, and F. Y. Ren, Continuous time Black-Scholes
equation with transaction costs in subdiffusive fractional Brownian motion regime, Physica A,
391 (2012), 750-759.

H. Y. Wong and J. Zhao, An artificial boundary method for American option pricing under the
CEV model, STAM J. Numer. Anal., 46 (2008), 2183-2209.

H. Y. Wong and J. Zhao, Valuing American options under the CEV model by Laplace-Carson
transforms, Oper. Res. Lett., 38 (2010), 474-481.

R. Yang, X. Qin, and B. Xia, Pricing barrier options with time-dependent parameters and
curved boundaries, ISECS International Colloquium on Computing, Communication, Control,
and Management, 3 (2008), 299-303.

C. B. Zeng, Y. Q. Chen, and Q. G. Yang, Almost sure and moment stability properties of
fractional order Black-Scholes model, Fract. Calc. Appl. Anal., 16 (2013), 317-331.

H. Zhang, F. Liu, I. Turner, and S. Chen, The numerical simulation of the tempered fractional
Black-Scholes equation for European double barrier option, Appl. Math. Model., 40 (2016),
5819-5834.

Z. Zhou and X. Gao, Numerical methods for pricing American options with time-fractional
PDE models, Math. Probl. Eng., 2016 (2016).



	1. Introduction
	2. American option pricing model
	3. Compact difference scheme
	4. Stability and convergence analysis
	4.1. Solvability
	4.2. Stability
	4.3. Convergence

	5. Numerical examples
	6. Conclusion
	Appendix A. Generalized Black-Scholes model its difference scheme
	References

