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Abstract In this article, the decoupled nonlinear Schrdingers equations have been considered
that describe the model of dual-core fibers with group velocity mismatch, group

velocity dispersion, and spatio-temporal dispersion. These equations are analyzed
using two different integrations schemes, namely, extended tanh-function and sine-
cosine schemes. The different kind of traveling wave solutions: solitary, topological,
periodic and rational, fall out as by-product of these schemes. Finally, the existence

of the solutions for the constraint conditions is also shown.
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1. Introduction

Traveling wave and soliton solutions are one of the most interesting and fascinat-
ing areas of research in different fields of engineering and physical sciences. These
molecules are basic ingredients for information transfer, through optical fibers for
trans-continental and trans-oceanic distances [1, 2, 3, 4, 5, 6, 7, 8, 9, 16, 17, 18, 19,
30, 33, 34, 36, 37, 38, 39]. Consequently, it is imperative to address the dynamics
of these soliton pulses from a mathematical aspect. This will lead to a deeper un-
derstanding of the engineering perspective of these solutions. In this paper, we will
study the different kinds of traveling wave solutions in dual-core optical fibers from
a purely mathematical viewpoint. Therefore, the importance of this paper will be to
extract exact traveling wave solution for the nonlinear model. This model is described
by the decoupled nonlinear Schrdinger’s equation (NLSE) with group velocity mis-
match, group velocity dispersion and spatio-temporal dispersion. There are several
integration tools available to solve the model. Many nonlinear Schrdinger equations
have been examined with regards to soliton theory, where complete integrability was
emphasized by various analytical techniques. A few methods of them are: homotopy
analysis method, variation principle, Kudryashov method, simplest equation method
and several others [10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32,
35, 40, 41, 42, 43, 44, 45, 46].

The structures of this paper as follows, the nonlinear model has been summarized
in section 2. In section 3, an overview of the integration scheme is given along with
the analysis of the model. The next section gives the travelling wave solutions with
sine-cosine method. In the last section, the conclusions have been given.

2. The governing equation

Pulse propagation in a decoupled two-core fibers has a distinction from continuous
wave propagation. In a conventional two core fibers, pulse propagation has been
studied extensively by solving the decoupled model equations; where the light coupling
between the two cores is characterized by a structure dependent parameter called the
coupling coefficients. The model for decoupled NLSE read as [14, 32]:

i
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∂ψ1
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∂ψ2
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)
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∂2ψ1
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∂2ψ1
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+ d1F

(
|ψ1|2
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ψ1 + k1ψ2 = 0, (2.1)
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∂x

)
+ b2

∂2ψ2
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∂x∂t
+ d2F

(
|ψ2|2

)
ψ2 + k2ψ1 = 0, (2.2)

where ψ1 and ψ2 are the field envelopes, while x is the propagation co-ordinate and
1/aj are group velocity mismatch, bj is group velocity dispersion, cj represents spatio-
temporal dispersion and kj is linear coupling coefficients, for j = 1, 2. It may also be
noted that dj is defined by 2πn2/ϑAeff , where n2, ϑ and Aeff are nonlinear refractive
index, the wavelength and effective mode area of each wavelength, respectively. For
more details, see [1, 2, 46].

The following section described the integration scheme that is used to investigate
the soliton solutions.



54 M. YOUNIS, S. T. R. RIZVI, A. SARDAR, S. A. MAHMOOD, AND A. BEKIR

3. Quick review of the extended tanh-function method

In this section, the extended tanh method [13, 41] has been summarized to obtain
the solutions of nonlinear partial differential equations (NPDEs). Hence, we consider
the NPDEs of in the following way:

P (u, ut, ux, ..., utt, uxt, uxx, ...) = 0, (3.1)

where P is a polynomial of u and its partial derivatives in which the relationship of
higher order derivatives and nonlinear terms.

To find the traveling wave solutions, we outline the following sequence of steps
towards the extended tanh method:

Step 1: Firstly, by using traveling wave transformation

u(x, t) = U(ξ)eiϕ, where ξ = B(x− νt). (3.2)

where B and ν are non-zero arbitrary constants, permits to reduce equation (3.1) to
an ODE of u = u(ξ) in the following form

Q(u, iκcu
′
,−iκcu

′
,−κ2u

′′
, ...) = 0. (3.3)

Step 2: Assuming that the solution of equation (3.1) can be expressed by the follow-
ing expression:

u(ξ) =
m∑
i=0

Aiφ
i, (3.4)

φ
′
= b+ φ2,

where b is a parameter to be determined, φ = φ(ξ), φ
′
= dφ

dξ .

Step 3: To determine the positive integer m, we usually balance linear terms of
the highest order in the resulting equation with the highest order nonlinear terms
appearing in (3.3).

Step 4: We collect all the terms with the same order of φj together. Equate each
coefficient of the polynomials of φi to zero, yields the set of algebraic equations for
κ, c and Ai, Bi (i = 1, 2, ...,m) with the aid of the Maple.

Step 5: κ, c and Ai, Bi (i = 1, 2, ...,m).

(i) If b < 0

φ = −
√
−b tanh(

√
−bξ), or φ = −

√
−b coth(

√
−bξ), (3.5)

it depends on initial conditions.
(ii) If b > 0

φ =
√
b tan(

√
bξ), or φ = −

√
b cot(

√
bξ), (3.6)
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it depends on initial conditions.
(iii) If b = 0

φ =
−1

ξ
. (3.7)

After substituting the above results into equation (3.3), the optical soliton solutions
of equation (3.1) can be obtained.

3.1. Applications of the extended tanh-function method. In order to study,
this decoupled system is being split into

ψj(x, t) = Pj(ξ)e
iϕ, (3.8)

where

ξ = B(x− νt).

Here, Pj(ξ), for j = 1, 2 are the amplitude components of the wave profiles, while ϕ
is the phase component of the profiles where ϕ = −κx+ ωt+ θ. The parameters κ, ω
and θ are the wave number, frequency and the phase constant, respectively. While B
represents the width of the soliton and ν is the velocity of soliton.

Substitute equation (3.8) and its derivatives into equations (2.1) and (2.2), and de-
composed into real and imaginary parts. The real part and imaginary part equations
for the two components are given below, for n = 3− j and j = 1, 2.

(−ω + bjκ
2 + cjκω)Pj + (ajκ+ k1)Pn +B2(bj − cjν)P

′′

j + djP
3
j = 0, (3.9)

B [ν − 2κbj + cj(νκ−B)]P
′

j + ajBP
′

n = 0. (3.10)

By balancing P
′′
with P 3 in equation (3.9) using homogenous balance method, give

m+ 2 = 3m⇒ m = 1.

Therefore, equation (3.5) takes the form

Pj(ξ) = Aj +Bjφ, for j = 1, 2. (3.11)

By substituting the vales of Pj , P
′

j , P
′′

j , P
3 and Pn into equations (3.9) and (3.10),

which yield the equations

(−ω + bjκ
2 + cjκω) (Aj +Bjφ) + (ajκ+ k1) (An +Bnφ)

+B2(bj − cjν)
(
2Bjbφ+ 2Bjφ

3
)
+ dj (Aj +Bjφ)

3
= 0, (3.12)

B [ν − 2κbj + cj(νκ−B)]
(
Bjb+Bjφ

2
)
+ ajB

(
Bnb+Bnφ

2
)
= 0. (3.13)
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Algebraic equations set can be obtained after equating the coefficients of φp for p =
0, 1, 2, 3, and setting equal to zero. Then, we have

2BjB
2(bj − νcj) + djB

3
j = 0, (3.14)

(−ω + bjκ
2 + cjκω)Aj + (ajκ+ kj)An + djA

3
j = 0, (3.15)

(−ω + bjκ
2 + cjκω)Bj + (ajκ+ kj)Bn

+2BjbB
2(bj − cjν) + 3djBjA

2
j = 0, (3.16)

Bj(−ν − 2κbj + cjνκ− cjB) + ajbBn = 0, (3.17)

3djAjB
2
j = 0. (3.18)

After solving the equation (3.15), the following value of Bj can be obtained:

Bj = ±B
(
2(cjν − bj)

dj

) 1
2

, (3.19)

with the constraint condition

djB
2(cjν − bj) > 0. (3.20)

The following ratio can be obtained by equating the coefficients in the following
manner, for n = 3− j and j = 1, 2,

Bj

Bn
=

(
(cjν − bj)dn
(cnν − bn)dj

) 1
2

, (3.21)

which introduces the naturally restriction

2∏
j=1

dj(cjν − bj) > 0. (3.22)

For b < 0 and Aj = 0, the following topological and singular wave solutions can be
constructed:

ψj1(x, t) = ∓B
(
2b(bj − cjν)

dj

) 1
2

×
[
tanh

(
−
√
−bB(x− νt)

)]
ei(−κx+ωt+θ), (3.23)

and

ψj2(x, t) = ∓B
(
2b(bj − cjν)

dj

) 1
2

×
[
coth

(
−
√
−bB(x− νt)

)]
ei(−κx+ωt+θ). (3.24)

For b > 0 and Aj = 0, the following periodic wave solutions can be obtained:

ψj3(x, t) = ±B
(
2b(cjν − bj)

dj

) 1
2

×
[
tan

(√
bB(x− νt)

)]
ei(−κx+ωt+θ), (3.25)

and

ψj4(x, t) = ∓B
(
2b(cjν − bj)

dj

) 1
2

×
[
cot

(√
bB(x− νt)

)]
ei(−κx+ωt+θ). (3.26)
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For b = 0 and Aj = 0, we have the following rational form of the solution:

ψj5(x, t) = ∓
(
2(cjν − bj)

dj

) 1
2

×
[
(x− νt)

−1
]
ei(−κx+ωt+θ). (3.27)

Solving the system of nonlinear equations (3.17)-(3.21), the following value of Bj can
also be obtained:

Bj = ±B
√
2(cnν − bn) [ν(1− cnκ) + (2κbn + cnB)]

ban
√
dn

. (3.28)

Thus, another class of the traveling wave solutions can be obtained in the following
manner:

For b < 0 and Aj = 0, an other class of topological and singular solutions can also be
obtained:

ψj6(x, t) = ∓B
√
2b(cnν − bn) [ν(1− cnκ) + (2κbn + cnB)]

anb
√
dn

×
[
tanh

(
−
√
−bB(x− νt)

)]
ei(−κx+ωt+θ), (3.29)

and

ψj7(x, t) = ∓B
√
2b(cnν − bn) [ν(1− cnκ) + (2κbn + cnB)]

anb
√
dn

×
[
tanh

(
−
√
−bB(x− νt)

)]
ei(−κx+ωt+θ). (3.30)

For b > 0 and Aj = 0, another class of periodic wave solutions can be constructed as
follows:

ψj8(x, t) = ±B
√
2(cnν − bn) [ν(1− cnκ) + (2κbn + cnB)]

an
√
bdn

×
[
tan

(√
bB(x− νt)

)]
ei(−κx+ωt+θ) (3.31)

and

ψj9(x, t) = ∓B
√
2(cnν − bn) [ν(1− cnκ) + (2κbn + cnB)]

an
√
bdn

×
[
tan

(√
bB(x− νt)

)]
ei(−κx+ωt+θ). (3.32)

For b = 0 and Aj = 0, the rational solution can also be obtained:

ψj10(x, t) = ∓
√
2(cnν − bn) [ν(1− cnκ) + (2κbn + cnB)]

ban
√
dn(x− νt)

ei(−κx+ωt+θ). (3.33)

In the following section, the sine-cosine method has been discussed.



58 M. YOUNIS, S. T. R. RIZVI, A. SARDAR, S. A. MAHMOOD, AND A. BEKIR

4. Quick review of the Sine-Cosine method

The main steps of sine-cosine method has been presented as follows:

Step 1: We describe the wave variable ξ=x-ct into the NPDE Eq. (3.1), we get
the NODE. Where u = u(x, t) is the traveling wave solution. This allows us to use
the following changes

∂

∂t
= −c ∂

∂ξ
,
∂2

∂t2
= c2

∂2

∂ξ2
,
∂

∂x
=

∂

∂ξ
,
∂2

∂x2
=

∂2

∂ξ2
, (4.1)

∂

∂y
=

∂

∂ξ
,
∂2

∂y2
=

∂2

∂ξ2
,
∂

∂z
=

∂

∂ξ
,
∂2

∂z2
=

∂2

∂ξ2
. (4.2)

Step 2: The solutions of nonlinear partial differential equations can be expressed in
the form

u(x, t) = {λsinβ(µξ)}, |ξ| < π

µ
, (4.3)

or in the form

u(x, t) = {λcosβ(µξ)}, |ξ| < π

µ
, (4.4)

where λ, µ and β are parameters that will be determined, µ and c are the wave number
and the wave speed, respectively, we use

u(ξ) = λsinβ(µξ), (4.5)

u′′(ξ) = λ′′sinnβ(µξ), (4.6)

un(ξ) = nµβλncos(µξ)sinnβ−1(µξ), (4.7)

un(ξ) = −n2µ2β2λnsinnβ(µξ) + nµ2λnβ(nβ − 1)sinnβ−2(µξ) (4.8)

and the derivatives of Eq. (4.3) become

u(ξ) = λcosβ(µξ), (4.9)

u′′(ξ) = λ′′cosnβ(µξ), (4.10)

un(ξ) = nµβλnsin(µξ)cosnβ−1(µξ), (4.11)

un(ξ) = −n2µ2β2λncosnβ(µξ) + nµ2λnβ(nβ − 1)cosnβ−2(µξ) (4.12)

and other derivatives.
Step 3: We substitute Eq. (4.4) or Eq. (4.7) into the reduced equation obtained
above in Eq. (4.1), balance the terms of the cosine function when Eq. (4.4) is used,
or balance the terms of the sine functions when Eq. (4.3) is used, and solving the
resulting system of algebraic equations by using the computerized symbolic calcula-
tions. We next collect all terms with the same power in cosk(µξ) or sink(µξ) and set
to zero their coefficients to get a system of algebraic equations among the unknowns
λ, µ and β. We obtain all possible values of the parameters λ, µ and β.



CMDE Vol. 9, No. 1, 2021, pp. 52-62 59

4.1. Applications of the Sine-Cosine method. We solve Eqs. (3.9) and (3.10)
by using this method. Hence, we substitute Eq. (4.7) into Eqs. (3.9) and (3.10) we
get,

(−ω + bjκ
2 + cjκω)αj sin

βj (µjξ) + (ajκ+ k1)αn sin
βn(µnξ)

+djαj sin
3βj (µjξ) +B2(bj − cjν)αjβj(βj − 1)µ2

j sin
βj−2(µjξ)

−αjβ
2
jµ

2
jB

2(bj − cjν) sin
βj (µjξ) = 0, (4.13)

B[ν − 2κbj + cj(νκ−B)]αjβjµj sin
βj−1(µjξ) cos(µjξ)

+ajαnβnBµn sin
βn−1 cos(µnξ) = 0. (4.14)

Equating the exponents and the coefficients of each pair of the sine function, we find
the following system of algebraic equations:

βj − 2 = 3βj , (4.15)

B2(bj − cjν)(βj − 1)αjβjµ
2
j + djαj = 0, (4.16)

(−ω + bjκ
2 + cjκω)αj + (ajκ+ k1)αn − αjβ

2
jµ

2
jB

2(bj − cjν) = 0. (4.17)

By solving the above system of equations. One can get the solutions

βj = −1, µj =
1

B

√
2(bj − cjν)

dj
, αj =

2αn(ajκ+ k1)

2ω − 2cjωκ− 2bjκ2 − dj
. (4.18)

We find the periodic solution as follows:

u1(x, t) =
2αn(ajκ+ k1)

2ω − 2cjωκ− 2bjκ2 − dj
sec

(
1

B

√
2(bj − cjν)

dj
B(x−νt)

)
ei(−κx+ωt+θ),

(4.19)

and

u2(x, t) =
2αn(ajκ+ k1)

2ω − 2cjωκ− 2bjκ2 − dj
csc

(
1

B

√
2(bj − cjν)

dj
B(x−νt)

)
ei(−κx+ωt+θ).

(4.20)

However, for cjν − bj < 0, we obtain the solitary wave solution as follows:

u3(x, t) =
2αn(ajκ+ k1)

2ω − 2cjωκ− 2bjκ2 − dj
sech

(
1

B

√
2(bj − cjν)

dj
B(x−νt)

)
ei(−κx+ωt+θ),

(4.21)

and singular solution is in the following form:

u4(x, t) =
2αn(ajκ+ k1)

2ω − 2cjωκ− 2bjκ2 − dj
csch

(
1

B

√
2(bj − cjν)

dj
B(x−νt)

)
ei(−κx+ωt+θ).

(4.22)
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5. Conclusion

The article obtains the traveling wave solutions of different kinds, which are solitary,
topological, singular, periodic and rational solutions to the model for dual-core fibers.
The integration mechanisms that are adopted, are extended tanh-function scheme
and sine-cosine scheme. It is quite visible that these integration schemes have their
limitations. Thus, this paper provides a lot of encouragement for future research
in optics. Afterwards, extra solution methods will be applied to obtain optical and
singular soliton solutions to the nonlinear model. Also, this model will be considered
with other forms of nonlinear media. These are polynomial law, parabolic law, log
law, saturable law, and several others. The constructed results may be helpful in
explaining the physical meaning of the studied models and other related nonlinear
phenomena models. Results are beneficial to the study of the wave propagation. All
calculations in this paper have been made quickly with the aid of the Maple.
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