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Abstract This paper presents a mathematical model for transmission dynamics of Zika virus
by considering standard incidence type interaction for the human to human trans-
mission. The model involves the transmission through the bite of infected Aedes
mosquitoes and human to human sexual transmission. The equilibria of the pro-
posed model are found and the basic reproduction number Ry is computed. If
Rp < 1, the disease-free equilibrium point is locally asymptotically stable and it
is also globally asymptotically stable under certain conditions. The analysis shows
that the model exhibits the occurrence of backward bifurcation, which suggests that
when Ry < 1 is not completely sufficient for eradicating the disease where the stable
disease-free equilibrium co-exists with a stable endemic equilibrium. The endemic
equilibrium point of the system exists and locally asymptotically stable under some
restriction on parameters, whenever Ry > 1. The sensitivity analysis is performed
to identify the key parameters that affect the basic reproduction number, which can
be regulated to control the transmission dynamics of the Zika. Further, this model is
extended to the optimal control model and to reveals the optimal control strategies
we used the Pontryagin’s Maximum Principle. It has been noticed that the opti-
mal control gives better result than without the optimal control model. Numerical
simulation is presented to support our mathematical findings.

Keywords. Zika virus, Basic reproduction number, Bifurcation, Stability analysis, Sensitivity analysis,
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1. INTRODUCTION

Mosquito-borne infectious diseases are a global health problem for humans. Zika
virus is one of the arboviruses which are primarily spread through the bite of infected
Aedes mosquitoes [2]. Zika virus is also transmitted through sexual transmission
and blood transfusions, which has not been documented formerly [1] for any other
arboviruses (Dengue virus, Chikungunya, Japanese encephalitis, Yellow fever virus,
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etc.). The sexual transmission of disease from male-to-female, female-to-male, and
male-to-male partners have been established but female-to-female sexual transmission
has not yet been found. Recent cases of blood transfusion have been identified. In
2016, the first sexual transmission of Zika virus case was noticed in France [6]. The
symptoms of the Zika virus are mild fever, loss of appetite, skin rashes, joint pain,
conjunctivitis, muscle pain, headache, etc. Normally the symptoms are exhibited
[21] for 2-7 days. The Centers for Disease Control and Prevention (CDC) strongly
recommended that Guillain Barres Syndrome [17] and microcephaly [20] are related
to Zika virus. In 2008, the potential of sexual transmission of Zika virus case was
reported in Senegal [27] by a scientist in his laboratory.

The Zika virus was detected in a rhesus monkey in 1947 in the Zika Forest of
Uganda and 1952, it was identified from human populations in Nigeria [8]. Since
1952, Zika virus outbreaks have appeared and infected humans in many countries
of Asia, Africa, the Americas, and the Pacific. It becomes a global threat as the
transmission is rampant. According to the World Health Organization (WHO), Zika
virus outbreaks are reported in more than 84 countries in the world, while 13 countries
[25] have been reported as the sexual transmission hub of the Zika virus. The first
largest outbreaks were reported in 2007 at the Island of Yap [26]. In 2013, a large
number of humans were affected by Zika in South Pacific and French Polynesia. In
2015-16, Zika virus spread rapidly in Brazil [20], in most of the American and the
Caribbean countries. In 2016, the World Health Organization announced Zika as a
Public Health Emergency of International Concern [27].

The Mathematical model plays an important role in understanding the transmis-
sion dynamics of the Infectious disease and in preventing the disease through treat-
ment, vaccination, and isolation of the infected population. Several authors formu-
lated and analyzed a number of Zika virus transmission dynamics models [1, 2, 8, 13,
18, 23]. In [1] authors constrated a model of Zika virus with vertical transmission.
In [2] authors formulated a simple mathematical model on Zika virus and introduced
optimal control strategies . In [8] authors studied the effect of Mosquito-borne and
sexual transmission on the spread and control of the disease. In [13], authors devel-
oped a mathematical model to examine the 201314 French Polynesia outbreak on the
six major archipelagos. In [18], authors proposed a Zika virus transmission model by
incorporating three nonlinear forces of infection from an infected mosquito. In [23]
authors presented a standard mass-action type model and included media impact for
a human to reduce the transmission. In [7, 10, 16], authors worked on the causes of
backward bifurcation in some epidemiological models.

This paper is organized as follows: Section 2, formulates the mathematical model,
Section 3, finds the existence of equilibria and computes the basic reproduction num-
ber; Section 4, discusses the existence of the bifurcation of the model; Section 5,
presents the stability analysis of the model; Section 6, illustrates the numerical sim-
ulation and results of the model; Section 7, presents sensitivity analysis of basic
reproduction number ; Section 8, studies the optimal control model and its analysis;
Section 9, demonstrates the numerical simulation results of the optimal control model
and finally in Section 10, we conclude our paper.
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2. THE MODEL

We have formulated a deterministic model of the Zika virus by assuming standard
incidence type interaction for the human to human transmission. The human pop-
ulation has been divided into four different compartments according to the nature
of the disease such as Susceptible human population S} at time t, Exposed human
population Ej; at time t, Infected human population I; at time t and Recovered
human population R, at time t. Also, the vector population has been divided into
three different compartments according to the nature of the disease such as Suscep-
tible mosquito S, at time t, Expﬁosled mosquito F, at time t and Infected mosquito

14h

I, at time t. Here incident rate is the average number contacts with infectives

1
per unit time of one susceptible [24] and (%) S}y, is the number of new cases per
h

unit time amongst the susceptibles [24]. Zika virus is transmitted between human to
human, human to vector and vector to human. Based on the above consideration, we
formulate the following model:

I I,
s = e (505, (B85, s,

N, N,
Bily, B2l
E = — (4 E
h <Nh Sh + N, Sk — (0n + pn) En,
I, = 0nEn— (yn+ pn + pa)In,
v = Yl — pnRh,

I
Szl) = Av_(ﬁjehh)'sv_ﬂvsva

o
E:; = <5Nhh> Sy — (/‘v + nv)Eva

I = nE,— p,1,, (2.1)

As N, =S, + Ep, + I+ Ry, and N, = S, + E, + I,,, we consider the following form
of the system for further analysis :

Ny, = Ap—paNp — paln,
Iy(Ny, — E;, — I, — R Ny, — Ey, — I, — Rp,) 1
B - B1In(Np hn—1In h) +ﬂ2( 3 n— I n) Ly (6 + ) B,
Nh Nh
I = 0nEn — (yn + pn + pa)In,
R, = Iy — unRy,
N’lIJ = A’U _:U’UNU7
I
E’i} = Bu(Ny— E, — Iv)i — (o + n0) B,
Ny,
I, = nyE, — 1. (2.2)

2.1. Positive Invariant.
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F1GURE 1. Flow diagram of the model.
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TABLE 1. Description of parameters

Parameter Description

Ay Rate of recruitment of human population,

A, Rate of recruitment of vector(mosquito) population,

51 Transmission rate between Sy, and I,

Ba Transmission rate between Sy, and I,,,

By Transmission rate between I, and S,

Lh Natural mortality rate of human population,

I Natural mortality rate of human population due to infection,

Iy Natural mortality rate of vector(mosquito) population,

on Contact rate between Ej, and Iy,

Yh Recovery rate of infectives(human) population,

Ny Contact rate between E, and I,

Theorem 2.1. If S;(0), E,(0),1,(0), Rx(0),5,(0), E,(0)I,(0) are non-negative, the

solutions of Sp(t),

En(t), In(t), Rn(t), Su(t), Ey(t), I,(t) of the systen (2.1) are positive

for all t > 0 with the same initial non-negative condition.

Proof. The first equation of the system (2.1), can be written as

B
[EE

at +

@+ Biln | Baly
N, N, T

h)Sh = A, 20,
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So that,

(Z |:Sh( ) exp (/Ot (Bjiih(g) + BJ#(Y)) + uh) dT)} >0, (2:3)

Integrating (3) yields

sw=sioee - [ (R %03

_|_

,uh) dT:| >0,
Where,
Ni(7) = Sn(7) + En(7) + In(7) + R (7), No(7) = Su(7) + Eu(7) + Lu(7),

In similarly way we can prove that Ep(t), In(t), Rn(t), Su(t), Ev(t), I,(t) are non-
negative for all ¢t > 0.
Hence proved of the theorem
Therefore, the biological feasible region attraction of the system (2.2) as follows:
7 An
{Q = (Sh, En, In, Ry, Sy, Eyy, 1)) € Ry - N < o N, < —}

v
3. EXISTENCE OF EQUILIBRIA AND THE BASIC REPRODUCTION NUMBER

3.1. Disease-free equilibrium point Ej. We consider the system (2.1) and find
the disease-free equilibrium point . For our model we have disease free equilibrium

A A,
point as Fo—(ND, EO, 19, B9, NO, 9, [0) — <Mh 0.0.0.52.0, 0>

3.2. The basic reproduction number Ry. We find the basic reproduction number
Ry by following the next generation matrix method as described in [3, 5]. Same

notation we use as in [3, 5]. We find the matrix F and V as follows:

I,
Ny, — Ey, — 1), — Ry) — Ny, — Ey, — 1), — Ry) —
B1(Np, h—In h)N + B2 (N, h—In h)N
0
F = 0 ,
I?)
ﬁv(Nv - Ev - Iv)Nh
and
(On + pn) En
V= —OnEn + (v + pn + 1) s
(Mo + p) By ’
_nvE'u"",uvIv
F= Jacobian of F at
0 B 0 B
0 0 0 O
Ey = By NO
0 2 0 0 ’
Ny
0 0 0 0



122 N.K.GOSWAMI AND B.SHANMUKHA

and V= Jacobian of V at

On + tn 0 0 0

B —0n Yt pnt+m 0 0
0 0 0 fo+n, 0 |

O 0 7771) :LLU

and it follows that

o B Pamw P2
D1 Dy Do D3, ,Ubv

. 0 0 0
V=1 6,8, BN -
DDy  DyN?

0 0 0 0

The largest eigenvalue of FV ! is called the basic reproduction number Ry and is
obtained as follows:

Snf 0B \? | BadnBunopnly
Ry = =Ry +/R? +4R
2D, D, +\/<2D1D2 T EADDyD, TV
where,

Dy = 6p + pin; Do = yp + pin + p1; D3 = 1y + fhoy,

wbB1 o, Ba0nBunepiny

R = =
! 2.D1.D27 2 ,U%Ah.Dl.DQ.Dg7

Here R; represents the basic reproduction due to human to human transmission by
ignoring the transmission of vectors. Similarly, R represents the basic reproduction
due to interactions with vectors in the absence of human to human transmission. The
reproduction number Ry gives the average number of infected individuals generated
by the one infected in a fully susceptible population and for our model it is given by
above expression of Ry .

3.3. Existence of Endemic Equilibrium. For the system (2.2), we get the endemic
equilibrium point as Ey = (N}, E}, I}, Ry, Ny, B, 1Y)

c[v)

EBE
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where
Ay — i IF
Nj = =B
Hh
I*
E;; = (WL + M; Jr'ul) h — dlI;;a
h
I*
Ry =1 — g1y,
Hh
Ay
Ny =—,
fho
E* — & * — Avﬁv
! Mo " (,uv + nv)[ﬂvﬁv + (Ah - NII;:).UUIZ]’
Av VMU . *
I = UL , provided Ay > pil;,

v /‘v(:uv + nv)[ﬂvﬁv + (Ah - /'I’II;;)/’L’UI;]

dI
Substituting the value of Ny, I}, Ry, Ny, Ey, I} in the equilibrium dth and I} is the

v Tv

positive root of the following non-linear equation, we get

Ay, —dip I 1
gIn) = —(6n + ) (F R (A~ Dal,
i i
BoAppin Bomndy }
dy + o,
[ﬂ T e+ 1) Botndi I + oA, — dipin In)}
A A oo d A
g0) = =2 {@dl + 52’”‘%5"1] — (n+ pn) = >0, for Ry > 1,
Hh ,uv(.uv + 7711) Hh
Ay Ap—dih, . 1 A,
m>m+Mxhlw{mm]
M1 Kh Kh 251
BoAppin Bonudy i1 }
di + <0,
[ﬁl ! (:U'v + nv){ﬂvﬂhdlAv + Ah,uU,Uq(l — dl)}
Ay, —dip A 1
9(A) = =+ ) (F ) - (A Dadl
BoAp i Bunydy }
di + <0,
[ﬁl ! (ty + 1) {Butind1 Ep + poo(Ap — d1p1 A)}
where,
Ay,
A= , Dy = (pady + pn + pady + ppds)

(Yn + pn 4 p11)

A
Here we observe that for A < I, < —h , g(In) is always negative, i.e. there is no
M1

A
change of sign in g(I). So there is no root of g(I5) in the interval A < I}, < =

431
G0
(0] €]
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FIGURE 2. Showing the existence of one root of g(I;) = 0 and polt
g(Ih) with I,

gll,)

Hence we can conclude that there is at least one root of g(I;) = 0 in the interval
0<Ip<A

D
g(Ip) = —— {51611 +
Hh

52#%1\115@%611 :|
(o + o) BottndrIn + i (Ap — dipr In)}

B { BaAppinBunudi{An — Dalp} }
o (o + ) Bopindi In + po(Ap — dypa ) 2
N (On + pn)pady
Kn

The above expression is negative under the condition Ay > p1l, and Ay > (u1dy +
pr + prdi + prde) Iy, then we can say that there exists unique positive root I} (say)
of g(I},) = 0 in the interval 0 < I, < A. Also, it is clear that if g(I},) < 0 at A then it
must be negative for all Ij, in the interval 0 < I, < A Hence under this condition, we
get the positive equilibrium point By = (N}, Ef, I, R, N, B}, I¥) and the fact is
ploted in Figure 2 . But if g(I) is not negative throughout the interval 0 < I;, < A,
then there is a possibility of more than one root of the given equation g(I;) = 0. In
general vector-borne disease model exhibits backward bifurcation which corresponds
to endemic equilibrium points for Ry < 1. For our model too, we get two positive
roots of g(I},) = 0 for some suitable set of parameters and the fact is ploted in Figure
3 . Hence we get two endemic equilibrium of the system (2.2).

<0

4. EXISTENCE OF BIFURCATION

Here we analyze the existence of Backward bifurcation for the system (2.1). The
phenomenon of backward bifurcation suggests that the stable disease-free equilibrium
co-exists with a stable endemic equilibrium for Ry < 1. This phenomenon has been
observed in some epidemiological model [10], particularly Dengue, Malaria and Zika
disease transmission models [7, 16, 23]. The backward bifurcation phenomenon has
significances implications for public health practice, as it is related directly to whether
or not the disease can be effectively controlled even when associated reproduction

(<)
EE
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FIGURE 3. Showing the existence of two roots of g(I},) = 0 and plot
of g(Ih) with I,

all,)

number Ry < 1. The backward bifurcation property for human disease suggests
that the standard incidence function is more suitable for modeling than mass action
incident functions [7].

Let us consider the following change of variables N, = z1, B = 3, s, = x3,
Iah = T4, Rh =I5, NU = 336711; = T7.

Also further by using vector notation X = (x1, xo, x3, x4, T5, Ts, T7
(2.2) can be formulated as shown below

)T, our system

dX

i = Fa),where F = (f1, fo, fs, fa, f5. fo. 1) "
Ty = Ap— ppr — s,

’ €3 7
Ty, = 51(551—152—%3—904);1 +52($1—$2—x3—$4);—(5h+uh)$27
x3 = Opxa+ (Vn+ i + p1)xs,
Ty = T3 — Unla,
27/5 = Av — U5
X

w6 = Bulws = w6 — ) 2 = (o + 1),
Tr = 6 — HeTT, (4.1)

Consider the case Ry = 1. Suppose, further, that $; = 37 is chosen as a bifurcation
parameter. Solving for 5 = 7 from Ry =1 gives

gr = (0n + pn) (Yn + pn + p1) B2 Buny Ay )
* =

Op, ( (On + ) O+ i+ ) (o + 7o) A,

The Jacobian of the above system (4.1) at disease-free equilibrium point Fy with
B1 = 57 is given by
[c]v)
EE
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— U, 0 — 0 0 0 0
0 -D; 0 0O 0 0 f
O & -Di 0O 0 0 0
J — 0 0 Yo —pn 0O 0 0
(B1) 0 0 0 0 —m 0 0
0 0 BE 0 0 -D; 0
T1
0 0 0 0 0 n
An A,
Where, 71 = —, 25 = ?,D1 = 0p + pn; Do = yn + pn + p1; D3 = 1y + fhy.

Hh v
According to Castillo-Chavez and Song [4], we use the center manifold theory and
analyze it, which is shown below

Theorem 4.1. (Castillo-Chavez and Song [4]). Consider the follwing general
system of ordinary differential equations with a parameter ¢,

d
d—f = f(z,4), f:R" xR — R, and f € C}(R" x R)
without loss of generality, it is assumed that 0 is the equilibrium point of the system

(i.e.f(0,0)) = 0 for all ¢ and
1. A= D,f(0,0) = gfi

(0, O)) is the linearization matriz of the system around the

equlibrium 0 with f evalui‘ed at 0;

2. Zero is the simple eigenvalue of A and other eigenvalues of A has negatives real
parts;

8. Matriz A has a right eigenvector w and a left eigenvector v corresponding to the
zero eigenvalue.

Let fi, be the kth component of f and

a)p = Z Ukwlw]m( s )
kyij=1 Lt

by = z”: VRW; aazgk (0,0)
kyi=1 2;0¢

then the local dynamics of the system around the equilibrium point 0 is totally deter-
mined by the signs a1 and by .

(i). ap >0, by > 0. When ¢ < 0 with |¢| < 1, 0 is locally asymptotically stable, and
there exists a positive unstable equilibrium; when 0 < ¢ < 0, 0 is unstable and there
exists a negative and locally asymptotically stable equilibrium;

(i1). a1 <0, by < 0. When ¢ <0 with |¢| < 1, 0 is unstable; when 0 < ¢ < 0, 0 is
locally asymptotically stable, and there exists a positive unstable equilibrium;

(iii). a1 >0, by < 0. When ¢ < 0 with |¢| < 1 is unstable, and there exists a locally
asymptotically stable negative equilibrium; when 0 < ¢ < 0, 0 is stable, and a positive
unstable equilibrium appears;

(<)
EE
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(iv). a3 <0, by > 0. When ¢ changes from negative to positive, 0 changes its stabil-
ity from stable to unstable. Correspondingly a negative unstable equilibrium becomes
positive and locally asymptotically stable.

4.1. Eigenvalues of Jg:. It can easily seen that the Jacobian with 3; = ] of the
linearized system has a simple zero eigenvalue and the other eigenvalues have negative
real parts. Hence, the center manifold theorem can be used to analyze the dynamics
of the syster (4.1) near 5, = 7.

For the case when Ry = 1, using the technique described in [7, 10], it can shown taht
the matrix Jg: has a right eigenvector (corresponding to the zero eigenvalue) given
by w = [wl,wg,wg,w4,w5,w6,w7}T, where

wy = =21y = 0, w5 = 1, w4 = w5 = 0,w6 = 0,w7 = 0,
Hh HKh
Similarly, the matrix Jg: has a right eigenvector (corresponding to the zero eigenvalue)

. T
given by w = [vla V2, V3, V4, Us, Vs, ’U7] ) where

1)
vy =0,v2 = 1,v3 = h+uh,v4 =0,v5 =0,
on
Vg = 52771; ’U7:&
ﬂv(NvJan)) Mo

4.2. Computation of a;. For the system (4.1), the associated non-zero partial
derivatives at DFE (Ey) are given by

?f 280 Pf
833367}3 Tq 8.1338$3,

9% f _ B _ 9% f
Ox4015 r1  Ox301y’

aQfG _ _51)x5 o anQ
Ox10x3 2 Q301

It follows from the above expressions that

_ N O
ap = E VW W 8:5-8%(0’0)
iOLj

kyi,j=1

2 2 v
= —V2 |:2”LU3"UJ3 (Bl> + Q'LU4’UJ3 <61>:| - 2’1)6'(1)111}3 (B ‘35)
T T 1

AP (pn ) | BaBopapnneAn
Ap 1y (pw + nv)A%

4.3. Computation of b;. For the system (4.1), the associated non-zero partial
derivatives at DFE (FEy) are given by

9% f _1
Ox30B1
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FIGURE 4. Plot diagram is infective populations with reproduction
number showing the backward bifurcation by considering bifurcation
parameter (3.
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It follows from the above expressions that

- 0% fx
by o= Y vw (0,0)
ki1 8.1%8

= v2w3:1>0

Here, it is clear that the coefficient b; is positive and according to the Theorem
(4.1),it will determine the phenomenon of backward bifurcation in our model. If the
sign of the cofficient a; is positive, its implies that the model will undergo backward
bifurcation aroud the disease-free equilibrim for 81 = 87 and the fact is demonestrated
in Figure 4. This suggest that the disease-free is not globaly stable.

5. STABILITY ANALYSIS

5.1. Local Stability of Disease-Free Equilibrium(DFE).

Theorem 5.1. If Ry < 1, the disease-free equilibrium Eq is locally asymptotically
stable otherwise it is unstable.

The Jacobian matrix of the system (2.2) at disease-free equilibrium point Fy =
(N7,0,0,0,N2,0,0) is obtained as follows:

— U, 0 — 0 0 0 0

0 —-D; 0 0 0 0 B2

0 5 —Dy 0 0 0 0

Ty — 0 0 Yh —Uh 0 0 0

0= 0 0 0 0 —pp O 0
NO

0 0 Bu=2% 0 0 —-Ds 0
Ny

0 0 0 0 0 M~

=
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where,

Dy = 0n + pn; Do = v + pin + p15 D3 = 10 + fio-
Clearly, three eigenvalues of the matrix Jy are —pup,—pp and —p,, and the remaining
four eigenvalues are the roots of the following characteristics equation:

M+aX 4+ +eA+d=0

NO

where,
2pn + O+ Yh + 2py + 1+ 1
b = (o +m0) + (pn + 0n) (vn + pn + p1) + (20 +10) (208 + 00 + 5 + p1)
c = o +10) + (pn + 0n) (Y + pn =+ 1)
NO
d )
)

o (
fo (fo =+ 10) (i =+ 61) (Vn + 1tn + p1) — B2BuOnm ~5
(

= (o +10) (ptn + 6n) (Yn + pn + p1)(1 — Rz)

All conditions of Routh Hurtwiz criteria are satisfied as a > 0,b > 0,¢ > 0,d > 0 and
abc > a’d+c? ,whenever Ry < 1. Hence all four eigenvalus of the characteristics equa-
tion are negative. Therefore the disease-free equilibrium FEjy is locally asymptotically
stable if Ry < 1

5.2. Global Stability of Disease-Free Equilibrium(DFE).

Theorem 5.2. If Ry < 1, then the disease-free equilibrium Eqy is globally asymptoti-
cally stable on Q under some conditions.

Proof. For the global stability of disease-free equilibrium, we follow the same method
described in [12]. Consider the following Lyapunove function:

Sh SO Sv SO
L = cl/ (1—h)dy+02Eh+cgfh+c4/ (1—”)dy
52 X Sg i

+Cs B, + Cs1,
The derivative of L along the solution of model (2.1) is

L S9N dSy, dE}, d, S0\ ds,
- 1 Zh ) 220 Z~h Z7h _ v
dx Cl( Sh> @ T TOy +C4( S, ) dt
dE, dr,
+Cs—— a + C@

Where, C; , fori =1,2,..,6 are positive constants to be chosen later

dL 59 Spl Spl,
— = Ci(1==22) (A, — 51 hoh_ 52 MY RS
dzr Sh

SwI, ShI
Nh

+ O {51 — (0n + Mh)Eh]
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S0 Syl
+  C3[0nEn(pr + pn + o) In] + Cy <1 — SU) [Av — By Nhh — oSy
S 1

+ Cs ﬂvﬁfihh - (,Uv + nv)Ev:| + OG("?UEU - ,U'UI'U)

using Sg = & , S¥ =~ in the above equation and simplify, we get
Hh Ho
dL (52 — Sp)? Sh
o= Wh = Ph) _ I — B, L.)2
10 Cipin S, + (Co = C1)(BiIn — B2 U)Nh
[ ﬁlAh BvAv :|
+ [C36;, — Co(6y, + E,+ |C + C I
[ 30h 2(h Mh)] h i 1MhNh 4,LLth Oh 2
Sul, Sy — Sy
— O3+ pun + ) + (Cs — Cu) B =2 — va!
Nh S’u
[ A
+ [06771) - CS(,uv + 771))} Ev + Cl BQ h - CG,u"L):| Iv
L #nNn
Let us choose the constants
ﬁlAh(sh"?v ﬂléhAy
= = 5 s = = s = -+ 5 ) =
R 7R (TS L R A AT
diL - _5 m (S}? - Sh)2 o ﬁlAhahnv (SS — Sv)2
dx ' Sh Nipen (po + 10) Sy

—(8n + pn) (1 + pn + 1) (1 — R3)

dL
Thus o < 0, for Ry < 0 and zero if and only if SY = S),, SY = S,,E, =1, = R;, =0

x
and E, = I, = 0. Therefore the largest compact invariant set in  is the singleton
set at Fp. So, the model (2.1) is globally asymptotically stable.

5.3. Local Stability of Endemic Equilibrium(EE).

Theorem 5.3. When Ry > 1, then endemic equilibrium E; is locally asymptotically
stable under some conditions, otherwise it is unstable.

The Jacobian matrix of the system (2.2) at endemic equilibrium point F; =
(N;,Ef I Ry, NS ES IX) is obtained as follows:

vy v

—un 0 — 0 0 0 0
Ma1 M2 Ma3 mog 0 0 mor
0 o —(m+pnt+wp) O 0 0 0
L=| o o b w00 0
0 0 0 0 —m 0 0
mgy 0 mg3 0 mes mes Mmer
0 0 0 0 0 Ny  —ly

=
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where

_ (Ba i+ Bi)Bdy + Buly)
mo1 = ’

(N;;)?
—(BI + Bl
Mooy = % _ (5h + ﬂ'h);
h
_ BN — B =215 — Rp) = Paly
m23 = * )
Nh
_ (Bl + BuI}).
Moy = Nf{ ;
e~ DUNE — B — I — Rp)
27 N;: 9
—Bo(Ny — Ey — I7)
me1 = 5
(Ny)?
_ ) N* _ E* _ I*
Mes — BT( UN:U 'u);
mes = Mes = mEH
Ny ’
_ B
Mmer = N;

Clearly, one eigenvalue of the matrix J; is —u, and remaining eigenvalues are the
roots of the following polynomial equation:

N N+ Ao+ ds XN+ AN+ dsA+dg =0

where
di = 2pp + py + k1 — maz + mes,
do = ky(pn + p5 +mee + fo — Mazpin) + pn + Mee + 2ty — 2Mazpin
—mMo3dy — MaaMes — Me6 — Lo,
ds = ki(pwmes + maoMesftn + Mazfihfle — WrTM66 — Wby — Me6ks — K1)

F iy lr M6 — M22Me6 Ly + Me6 ALy T+ T22Me6 Uh + M2 Uh fhy
+0pmas(Mes — 2tn — o) — OpYhlboMaa + f10pMa1,

dy = poptnMoames + k1fheftnMoames + pnmaa (s + k1) (mes + fho)
—k1propnmes — kg mas + Spmas(pemes — py + 2pnmes — 2finfy )
Fpn0nYrM24 + OpYRM24Me6 — OpYn 124 + OnTuMe3MeT,
— 1 6pMa1Meg + f11 by OpMa1Mes — K1 fih by M6
ds = kyiprmoo (e +mes) — ki fintiomes (ftn — mao) + i pomaomes (i + k1)
+p16nm0mermar + Spmas (2 1 Mes + 1 oMes + 11766 — K o)
FOnYn o MaaMes + On YR h 2466 — fbh by Or YR M24 + On VRN M2aMe7
80
Ba
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+20p My MesMer + 10pMa1 (Mes — fy) — 11 o0 M1 M6 — L1 0T,

ds = kipopimaeomes + wnnynmas — p1pndnman ) (Hemes + Mumer)
81 o 17 Ma3MeG6 + 110170 M1 MET + Ty fhoOn YR M24Me7
— 1My ORM27Me1Me6 + [k Lo Oh YhTM24M6T,
where

k1 =vn+ pn + 1

Thus the Routh-Hurwitz criterion, the above equation will give negative roots or
negative real parts if the following condition are satisfied:

& d ds ds dy
ds > 0, 15 d3 >0,|1 dy do] >0,

4 0 ds ds
& 4y d 0 ds d3s di 0 0
Dol a 1 dy do dy O

402 005010 dy dy di 0]>0
0 ds ds d

o 1 d d 0 1 dy dy do
4 %2 0 0 ds d3 d4

)
Hence the endemic equilibrium point F; of the system is locally asymptotically stable,
when Ry > 1.

5.4. Global Stability of Endemic Equilibrium(EE). Here we analysis the global
stability of the model (2.1) at endemic equilibrium F;, the endemic steady state the
system at F, is given by,

S*
(Bl + BoI) =k

A, = Sy
h Nh +/’l/h h»
(5h+Mh)Eh = (ﬁllh+BQIv)N )
h
onEy = (p1+ pn + ),
o + + o+ S:
( h p“h)(:ul Hh ’Yh)[;]k _ (51[;; +/62I:)<) h7
On Ny,
BuSyly
Av = — US*7
N, + MOy,
BuSily
v v £, = - )
(ko +10) E N,
nvE:; = ,uvI;v
BuSeliy  _ (ot mo)poly
Nh Ny ’

Theorem 5.4. If Ry > 1, then the endemic equilibrium E; is globally asymptotically

stable under some conditions.

(<)
EE
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Proof. For the global stability of endemic equilibrium, we follow the same method
described in [11]. Here we consider the following Lyapunov function:

Sh 0 Ep 0 Ip 0
L:/ (1—S>dx+/ <1—E)d:c+<5”+“h>/ (1—I>dx
s9 X EY X 5h 19 x
Sv 0 E, EO I, IO
+/ <1—S)d +/ (1—)d:c+<””+“”>/ (1—>dx

50 z EO Z T 0 z

The derivative of L along the solution of model (1) is

0 0 0
% _ 1_ S dSy (11— E} N\ dEy, " On + pn, 1_ I)\ dI,
dx Sh dt Eh dt on Ih dt
SO ds, EY\ dE, Ny + o I°\ dI,

1--= R 1--=2
N ( SU) dt - ( Ev) dt - ( T ) < Iv) dt

dS, dEy

Now from the mathematical model we put the expressions for TR
dl, dS, dE, dI,
dtCdt T dt T dt

S9N\ ds, 59 ShIh ShI
(1 - Sh> - <1 - Sh) [Ah - 51 - 52 - ,uhSh:|

n the above equation, which gives

S
Sh . “ Sh
<1 - Sh) [(ﬂlfh + 62[”)1\7}1]

L (Sr —Sp)? S9 . o SF
= Lh TRy (1-Zh I + Bo1
wnSh S, S, (BiI}, + B21y) N,

—(BuIn + Mvﬁ + (Bul} + BoI)

0
= (1= 58) mesi - uhsh—wlfhwzf)N’“”]

“h
Ny

E dF EO Sil Snl,
(1 — E:) dth = (1 — ) {51 hoh 52 h — (on + ,uh)Eh]
SyE3;

NpLE},

= (Biln+ 52%); — (B1In + B21y)
—(0n + pn)En + (0n + pn) Ey,

- Sh LB}
= (Biln+ 52%)7 — (B + Ba21, )NhEh

S*
Np,

On + 1in 1_ IR\ din _ (Ot I onEn,
o, 1 dt o, 1

—(6n + pn) En + (BiI}; + BoI) L
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I,
S + + pn +
(O A+ ) (v A+ “1)(Ih+12)
On
. o SEERI}
- (6h+/lh)Eh_(/81]h_62L;)N E*Ih
S¥I* S5
(ﬂlIh+52I*) hh (51[h+521*) 2
SO\ dsS, SY Sy,
1-2e 1—22) A, — -
(-3)% - (-5)[a-n5t-ns)
/B’US*I* * /BvSth
= 1-= v — T Ay T Musw
(1-2) [ 255 4 s - B s
_ S* (S* S ) (1 _ SS) 61}551}7 _ ﬂvSth + B?;S?I;:
S Sy Ny Ny Ny,
E°\ dE E? Sy
- = : 1_7 v - v v Ev
(-2)% = (-2) 25 -]
Sth SthE
= B, — By Y (g o) (B, + B
B B N E. (1o + o) (Ey + EY)
S I Syl EY oSl
= Bv h ﬁv h (Mv"‘nv)Ev'f'ﬁ]Vih
h
mot e (A _ 77'u+/~’/v LD (0 1)
T}U IU dt - I 77’[) v /’I”U v
= (M +po)Ey — ﬂhj) oly + ply)
I3
—( + o) E UE
BuSiIy EyIy  BySyli I
_ E — v v ‘v
(1 + o) By No Bl N1
BuSy1},
+ N,
It follows that
(S —Sn)? (Sy = Su)?
L = S i
HhrOp, S, + v S,
Sy Sy I, ERl Bily, + Bod, ShE,’;)]
+ I + BoIy 3—h 2 —~
(Buli + 52 )Nh [ Sn I}  Eil, B+ Bl S Ej,
BuSHIf g _ ﬁ B Il - E I I, 1 Sy E}
Ny, S, Ir EXI, I* S¥E,

=
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On + pn
on

i

I*
(On + pn)En — (61 + pn) B2

IO
) (1 - Ih> (vn + e + p1) Lsn
h
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Therefore, the arithmetic mean (A.M.) is greater than or equal to geometric mean
(G.M.), we have,

{3 Sy In BRI ﬁ1]h+ﬂ2[v< ShE}t)}SO

S, I Erl, Bl +pBuIr O SiEj

S* I E, I* I S, E*
IR R % I O PR Cr /I N
[3 S, I BT (1 S:;Ev)]o

dL dL d
Thus it is easy to observed that g < 0 and equality T = 0 hold only for Sh =

as;
dEy, dI, ds, dE, dI, .
= =1 and = = =1 f hich = S5 Ey, = Ef I, =
dE; — dr; U ds; T dE; C dIp or which 5y = 55, B = Ei, In
15,8y =8, By =E;, I, =1
From the LaSells invariance principal [14] the endemic equilibrium E; of the given
system is globally asymptotically stable for Ry > 1

6. SENSITIVITY ANALYSIS

In this section, we present the impact of the change in values of the parameters on
the functional value of the basic reproduction number Ry. The sensitivity index of
Ry that depends differentiably on any of its parameter P as described [18, 22]

Y§O _ 5%
Ry OP
Here the parameter 1, 82, 8y,0n,n, are the leading parameters, which control the
basic reproduction number Ry. The sensitivity of Ry are given below:

yRo _ 51{ On n B10n ]
& Ry [2D1Ds 2D1D2\/§
yRo _ B2Bv0nno pin Ay
Ba2 - 5 =,
2ROAh/},vD1D2D3\/§
yRo _ ﬂZﬂv(;hnv,UhAv
ﬂ’u - 2 =
QRQAthDlDQDg\/)?
yRo _ 511{ B " B10n ]
on Ry [2D1D> 2D, DoVX
yRe _ By O pin Ay
Mo - 2 =
2RoApp2 Dy Dy D3V X
R R
Yﬁzo = YBUU’
where,
VT o (Lo N BeBudumun e
2D1 D, Appu2D1DoDs

As the above partial derivatives are positive, so we conclude that the basic reproduc-

tion number Ry increases based on increase the control parameters. It is observed

that YBIEO = YBIEO, hence we can conclude that minore changes in 1, 82, By, On, My, We
an
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FIGURE 5. Influence of 51 and B3 on Ry

FIGURE 6. Influnce of 51 and B3 on Ry

will have same outcome on Ry. In Figures 5 ,6 and 7, we have demonestrated the
effect of the parameters 1, B2,5, on Ry

7. NUMERICAL SIMULATION

For the Numerical simulation of the model, we consider all the parameters are in
per day basis. First we consider the following set of parameters which corresponds to
disease-free equilibrium.

Ap = 2; Ay, = 40; A1 = 0.05; B2 = 0.05; B, = 0.06;

pup = 0.08; uy = 0.01;y, = 0.04; 6, = 0.01;n, = 0.2; u, = 0.1
For the above set of parameters we get Ry = 0.3162 < 1 and the disease-free equilib-
rium point Ey(35.53,0,0,0,398.33,0,0) is stable. This fact is demonstrated in Figure
8. Later, we change our parameter py from 0.009 to 0.08 and ~y; from 0.009 to 0.04
and this leads to increase in Ry. Here Ry = 1.6165 > 1, and the endemic equilibrium
BE
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F1GURE 7. Influence of 35 and (3, on Ry
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FIGURE 8. Variation of Sy, Ey ,In,Rp Sy, E,, I, showing the stability
of disease-free equilibrium point with Ry = 0.3162.

Populations

E4(125.31,51.35,25.15,27.31,378.51,12.31, 15.53) is stable. The stability of the equi-
librium point F; is shown in Figure 9. The effect of different values the parameter (7;,)
which corresponds to infective human is demonstrated in Figure 10. It is clear that
the parameter (7;) increase the infected population decreases. The effect of different
values of the parameter (dp,) which corresponds to exposed human is demonstrated in
Figure 11.

8. OrTIMAL CONTROL MODEL

Here, we have extended our model (2.1) to optimal control problem by including
three optimal control parameters ,namely, u; , uo and us. If uy, us and ug are equal
to zero, then there is no effect being placed in these controls at time t and if they are
equal to one then the maximum effect is applied. The control variable u; represents
the reduction in the transmission between human to human. The control variable s
represents the use of insecticide-treated bed nets and the use of mosquito repulsive
lotions and electronic devices, to reduce mosquito biting rate. The control variable ug

ZlE]
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FIGURE 9. Variation of Sy, Ey ,In,Rp Sy, Ey, I, showing the stability
of endemic equilibrium point with Ry = 1.6165.
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FI1GURE 10. Variation of I, with time showing different values of ~y.
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F1GURE 11. Variation of Fj with time showing different values of dj,.

00 -

g
T
I

2
T
I

Exposed Population(E,

3
T
I

I I I I I I
o
) 100 20 200 00 500 500 700 00 %00 1000

Time in Days




CMDE Vol. 9, No. 1, 2021, pp. 117-145 139

corresponds to the additional death rate of mosquitoes due to control efforts. Based
on the above assumptions, the optimal control model as follows:

dsy, Suly Sl

Ph A — (1= _ . hiv

pm h—(1—u)B N, (1 —u2)p N, 1nSh,
dE SiI Sy 1,
anh = (1-w)b ;\L]hh + (1 —u2)p2 ]}\}h — (On + pn) Ep,
dl

7: = OonEn — (vn + pn + p1)In,
dRy,
—_— = I, — unR

dt Yhdh — Phith,

dSU Sth

= Av —(1- v AT v v

o (1—wu2)B N, (o + u3)S
dE Syl

dtv = (1 - u2)/81};<]—7hh - (,Uv + N + UB)E'L;’

dI,

dt = nva - (/”"u + US)I’LH (81)

8.1. The Optimal Control Problem. In this section, we analyze the behavior of
the given model by using optimal control theory. The objective functional for fixed
time t; is given below:

ts 1 1 1
J = / [Al (Ep +1p) + As(Sy + By + 1) + §A3u12 + 5A4u§ + —|—§A5u§ dt
0

Here the parameter A; > 0, As >0, A3 > 0, A4 > 0, A5 > 0 and they represent the
weight constants.
Our objective is to find the control parameters u;*,us*, uz*™ such that

J(u*) = meigJ(ul,uQ,u;;), (8.2)

where () is the control set and is defined as
Q = {uj,u9,us : measurable and 0 < u; < 1}, 0 < ug < 1}, 0 < uz < 1} and
t e [Oﬂff].
The Lagrangian of this problem is defined as :
1 1
L(En, I, Sy, By, Ly, ui,us, u3) = A1 (Ep+ 1)+ As(Sy + By +1,,) + 5143U12 + §A4U§ +
1
§A5U§

For our problem, we formed Hamiltonian H :

ds dE dl dR
H = L(EhaIhaSvaEv,Ivaulau2>u3)+>\17h+)\27h+/\37h+)\47h

dt dt dt dt
as, dE, dl,

+)\5W +)\6W + A7 ar

where \;,(i = 1,2,....7) are the adjoint variables. Now the differential equation cor-
responding to adjoint variables can be written as

(el
BE
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d\ In(Np, = S
L ,uh)\l—i—(l—ul)ﬂlh(;]ﬁ}l)()q—)@)
Ny — Sp)I, ky Sy 1,
+(1 - uz)%@\z =)+ (1 - u2) = " (A6 = Xs)
h h
dA Sl Sl
dTZ = A e+ (1—w)p ]@5"@2 M)+ (1 )ﬂQN’é (A2 — A1)
S]]
+0n(A2 — A3) + (1 — ug)ﬁ N2 h (A6 — As)
h
d\ Sh(Ny, — 1
7; = —Ai+ (pn + )z + Az — A) + (1 —u1)Ba A J:sz : (1 =22)
h
Spl, Sp(Np — 1
+(1 — U,Q)/BQ ]}\;2 (AQ — )\1) + (1 — Ug)%()kr) — A6)
h h
dX Snl Snly
7; = ppAs+(1— u1)BlN% h(>\2 M)+ (11— u2)ﬁ2N% (A1 = A2)
BvSth
+(1 —ug) (A6 — As)
N
A d
2 - _A2+<MU+U3>A5+(1—u2)ﬁ(A5—A6>
dA
7; = —Ao+ (ty + US))\G - nv()‘ﬁ - >\7)
A S
T Ay (o +uz)A7 + (1 — U2)527h()\1 — A2) (8.3)
dt Ni

Let ,,S’Z, E;“fh,m/,vg;\,/ @,Q}/Dgﬂlwptimum values of Sy, Ex,I;, Rp,S,, E, I,
respectively, and A1, A2, A3,A4,A5,A6,A7 be the solution of the system (8.3)
By using [14, 15, 19], we state and prove the following theorem:

Theorem 8.1. There exist optimal controls (u1*,us*, us*) € Q such that
J(ur*, ug*, uz*) = min J(uy, ug, us) subject to system (8.1).

Proof. To prove this theorem we use [15]. Here the state variables and the controls
are positive. For this minimizing problem, the necessary convexity of the objective
functional in (uy,us,us3) is satisfied. The control variable set uq,us,us € Q is also
convex and closed by the definition. The integrand of the functional Ay (Ey + Ip,) +

1 1 1
As(Sy + By +1,) + §A3u12 + §A4u% + §A5u§ is convex on the control set 2 and the

state variables are bounded.

Since there exist optimal controls for minimizing the functional subject to equations
(8.1) and (8.3), we use Pontryagin’s maximum principle to derive the necessary con-
ditions to find the optimal solutions as follows:

If (x,u) is an optimal solution of an optimal control problem, then there exist a non-

trivial vector function A = A1, Ao, Ag, ... , A, satisfying the following equalities.
dx _ OH(t,z,u,\)
dt O\

(<)
EE
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OH (t,z,u,\)
0=—">-—"">=
ou

d\  9H(tx,u,))
dt Ox

With the help of Pontryagin’s maximum principle [15] and theorem (8.1), we prove

the following theorem:

Theorem 8.2. The optimal controls (u1*, us*, uz*) which minimizes J over the region
Q given by

. SHI*
u1™ = min{l, maz <O,ﬂ1 A;J\Zf (A — /\2)>}

uz® = min{l, maz (O (B28515) (A1 = Az) + (8o STL;) (As — )‘5))}

ALN;

uz® = min{l, max (

SiXs + EXdg + Ii A7
i }
5

Proof. Using optimally condition :
oH  OH  OH

a5 — Y — Y5 Oa
Ouq Ous Ous
we get,
OH SrIr ST
0 A h h)\ _ h h)\
Du, ur Az + By N7 2 — B N7 1
This implies
SyI¥ __
ur = 5 A;]\;}: (A1 —=X2) =u1

Proceeding similarly, we get

(B2SHI5) (M = A2) + (BuSyTi) (A6 — As)
AN

Uy =

Sids+Edg+ Ny _
Uz = A5 = Uus

Again upper and lower bounds for these control are 0 and 1 respectively. i.e. u; =
g =u3 =0if u; <0, us <0,uz <0and uy =ug =uz=1ifu; >1,uy; >1and
us > 1 otherwise uy = uy , us = uy and uz = uz. Hence for these controls u;*,us*
and us™ we get optimum value of the function J.

(el
BE
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FI1GURE 12. The graph represents the susceptible humans with and
without control.
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F1GURE 13. The graph represents exposed human with and without control
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FiGURE 14. The graph represents susceptible mosquito with and
without control
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FIGURE 15. Variation of exposed mosquito with and without control

20
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9. NUMERICAL SIMULATION OF OPTIMAL CONTROL

We simulate our optimal control model by keeping the parameters corresponding
to stability of endemic equilibrium point F; of the model (2.1). With the help of
MATLAB the optimal control model is simulated. We solve the optimality system by
the iterative method with the help of forwarding and backward difference approxima-
tions [19]. Here in Figure 12, Figure 13, Figurel4 and Figure 15, is plotted to observe
the effects of optimal controls for susceptible humans S}, infected humans I}, suscep-
tible mosquitos S, and infected mosquitos I, respectively are plotted to observe the
effects of optimal controls against time with and without optimal control. It is easy
to notice that optimal control is more effective in reducing the number of infectives
is considered the period. The all three optimal control application is the best control
strategy to minimize the number of infectives, which will reduce the spread of Zika
virus.

10. CONCLUSION

In this paper, a mathematical model for the transmission dynamics of Zika virus
is proposed and analyzed. For the dynamical behavior of the disease, we discussed
the existence of equilibria and computed basic reproduction number (Rp) in detail.
The disease-free equilibrium is locally and globally (with restrictions of parameters)
asymptotically stable whenever the basic reproduction number Ry < 1. Here we pre-
sented the existence of backward bifurcation which suggests that when Ry < 1 is not
completely sufficient for eradicating the disease from the specific region and this fact is
demonstrated numerically. The backward bifurcation phenomenon has significances
implications for public health practice, as it is related directly to whether or not
the disease can be effectively controlled even when associated reproduction number
Ry < 1. Whenever the basic reproduction number Ry > 1, then the endemic equi-
librium is locally and globally asymptotically stable with restrictions of parameters.
The sensitivity of different parameters of (Ry) is discussed and it is clear that (Rp)
is very sensitive with respect to parametres involved with the model. The numerical

(el
BE
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simulation is performed to support our mathematical results and and to compare our
model with the existing model in [9]. Numerical simulation results indicate that the
increase in the recovery rate of (vy;,) causes a decrease in the equilibrium level of the
infective human.

We extended our model to the optimal control model and analyzed the optimal
control strategy to eliminate the virus from the tropical region. All three optimal
control parameters are the best control strategies to minimize the number of infec-
tives, which will reduce the spread of the Zika virus. It is easy to notice that optimal
control is more effective in reducing the number of infectives in a considered period.
The control variable (u;) represents the reduction in the transmission between human
to human. The control variable (ug) represents the use of insecticide-treated bed nets
and the use of mosquito repulsive lotions and electronic devices, to reduce mosquito
biting rate. The control variable (us) corresponds to the additional death rate of
mosquitoes due to control efforts. The model is analyzed by using Pontryagin’s Maxi-
mum Principle for better results. The numerical simulation is executed to observe the
influence of optimal control. Finally, we can conclude that optimal control strategies
give us better results to reduce the Zika virus infection.
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