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Abstract This paper presents a mathematical model for transmission dynamics of Zika virus
by considering standard incidence type interaction for the human to human trans-
mission. The model involves the transmission through the bite of infected Aedes

mosquitoes and human to human sexual transmission. The equilibria of the pro-
posed model are found and the basic reproduction number R0 is computed. If
R0 < 1, the disease-free equilibrium point is locally asymptotically stable and it
is also globally asymptotically stable under certain conditions. The analysis shows

that the model exhibits the occurrence of backward bifurcation, which suggests that
when R0 < 1 is not completely sufficient for eradicating the disease where the stable
disease-free equilibrium co-exists with a stable endemic equilibrium. The endemic

equilibrium point of the system exists and locally asymptotically stable under some
restriction on parameters, whenever R0 > 1. The sensitivity analysis is performed
to identify the key parameters that affect the basic reproduction number, which can
be regulated to control the transmission dynamics of the Zika. Further, this model is

extended to the optimal control model and to reveals the optimal control strategies
we used the Pontryagin’s Maximum Principle. It has been noticed that the opti-
mal control gives better result than without the optimal control model. Numerical
simulation is presented to support our mathematical findings.

Keywords. Zika virus, Basic reproduction number, Bifurcation, Stability analysis, Sensitivity analysis,

Optimal control.
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1. Introduction

Mosquito-borne infectious diseases are a global health problem for humans. Zika
virus is one of the arboviruses which are primarily spread through the bite of infected
Aedes mosquitoes [2]. Zika virus is also transmitted through sexual transmission
and blood transfusions, which has not been documented formerly [1] for any other
arboviruses (Dengue virus, Chikungunya, Japanese encephalitis, Yellow fever virus,
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etc.). The sexual transmission of disease from male-to-female, female-to-male, and
male-to-male partners have been established but female-to-female sexual transmission
has not yet been found. Recent cases of blood transfusion have been identified. In
2016, the first sexual transmission of Zika virus case was noticed in France [6]. The
symptoms of the Zika virus are mild fever, loss of appetite, skin rashes, joint pain,
conjunctivitis, muscle pain, headache, etc. Normally the symptoms are exhibited
[21] for 2-7 days. The Centers for Disease Control and Prevention (CDC) strongly
recommended that Guillain Barres Syndrome [17] and microcephaly [20] are related
to Zika virus. In 2008, the potential of sexual transmission of Zika virus case was
reported in Senegal [27] by a scientist in his laboratory.

The Zika virus was detected in a rhesus monkey in 1947 in the Zika Forest of
Uganda and 1952, it was identified from human populations in Nigeria [8]. Since
1952, Zika virus outbreaks have appeared and infected humans in many countries
of Asia, Africa, the Americas, and the Pacific. It becomes a global threat as the
transmission is rampant. According to the World Health Organization (WHO), Zika
virus outbreaks are reported in more than 84 countries in the world, while 13 countries
[25] have been reported as the sexual transmission hub of the Zika virus. The first
largest outbreaks were reported in 2007 at the Island of Yap [26]. In 2013, a large
number of humans were affected by Zika in South Pacific and French Polynesia. In
2015-16, Zika virus spread rapidly in Brazil [20], in most of the American and the
Caribbean countries. In 2016, the World Health Organization announced Zika as a
Public Health Emergency of International Concern [27].

The Mathematical model plays an important role in understanding the transmis-
sion dynamics of the Infectious disease and in preventing the disease through treat-
ment, vaccination, and isolation of the infected population. Several authors formu-
lated and analyzed a number of Zika virus transmission dynamics models [1, 2, 8, 13,
18, 23]. In [1] authors constrated a model of Zika virus with vertical transmission.
In [2] authors formulated a simple mathematical model on Zika virus and introduced
optimal control strategies . In [8] authors studied the effect of Mosquito-borne and
sexual transmission on the spread and control of the disease. In [13], authors devel-
oped a mathematical model to examine the 201314 French Polynesia outbreak on the
six major archipelagos. In [18], authors proposed a Zika virus transmission model by
incorporating three nonlinear forces of infection from an infected mosquito. In [23]
authors presented a standard mass-action type model and included media impact for
a human to reduce the transmission. In [7, 10, 16], authors worked on the causes of
backward bifurcation in some epidemiological models.

This paper is organized as follows: Section 2, formulates the mathematical model;
Section 3, finds the existence of equilibria and computes the basic reproduction num-
ber; Section 4, discusses the existence of the bifurcation of the model; Section 5,
presents the stability analysis of the model; Section 6, illustrates the numerical sim-
ulation and results of the model; Section 7, presents sensitivity analysis of basic
reproduction number ; Section 8, studies the optimal control model and its analysis;
Section 9, demonstrates the numerical simulation results of the optimal control model
and finally in Section 10, we conclude our paper.
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2. The Model

We have formulated a deterministic model of the Zika virus by assuming standard
incidence type interaction for the human to human transmission. The human pop-
ulation has been divided into four different compartments according to the nature
of the disease such as Susceptible human population Sh at time t, Exposed human
population Eh at time t, Infected human population Ih at time t and Recovered
human population Rh at time t. Also, the vector population has been divided into
three different compartments according to the nature of the disease such as Suscep-
tible mosquito Sv at time t, Exposed mosquito Ev at time t and Infected mosquito

Iv at time t. Here incident rate
β1Ih
Nh

is the average number contacts with infectives

per unit time of one susceptible [24] and

(
β1Ih
Nh

)
Sh is the number of new cases per

unit time amongst the susceptibles [24]. Zika virus is transmitted between human to
human, human to vector and vector to human. Based on the above consideration, we
formulate the following model:

S′
h = Λh −

(
β1Ih
Nh

)
Sh −

(
β2Iv
Nh

)
Sh − µhSh,

E′
h =

(
β1Ih
Nh

)
Sh +

(
β2Iv
Nh

)
Sh − (δh + µh)Eh,

I ′h = δhEh − (γh + µh + µ1)Ih,

R′
h = γhIh − µhRh,

S′
v = Λv −

(
βvIh
Nh

)
Sv − µvSv,

E′
v =

(
βvIh
Nh

)
Sv − (µv + ηv)Ev,

I ′v = ηvEv − µvIv, (2.1)

As Nh = Sh +Eh + Ih +Rh and Nv = Sv +Ev + Iv, we consider the following form
of the system for further analysis :

N ′
h = Λh − µhNh − µ1Ih,

E′
h =

β1Ih(Nh − Eh − Ih −Rh)

Nh
+

β2(Nh − Eh − Ih −Rh)Iv
Nh

− (δh + µh)Eh,

I ′h = δhEh − (γh + µh + µ1)Ih,

R′
h = γhIh − µhRh,

N ′
v = Λv − µvNv,

E′
v = βv(Nv − Ev − Iv)

Ih
Nh

− (µv + ηv)Ev,

I ′v = ηvEv − µvIv. (2.2)

2.1. Positive Invariant.
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Figure 1. Flow diagram of the model.

Table 1. Description of parameters

Parameter Description

Λh : Rate of recruitment of human population,
Λv : Rate of recruitment of vector(mosquito) population,
β1 : Transmission rate between Sh and Ih,
β2 : Transmission rate between Sh and Iv,
βv : Transmission rate between Ih and Sv,
µh : Natural mortality rate of human population,
µ1 : Natural mortality rate of human population due to infection,
µv : Natural mortality rate of vector(mosquito) population,
δh : Contact rate between Eh and Ih,
γh : Recovery rate of infectives(human) population,
ηv : Contact rate between Ev and Iv

Theorem 2.1. If Sh(0), Eh(0), Ih(0), Rh(0), Sv(0), Ev(0)Iv(0) are non-negative, the
solutions of Sh(t), Eh(t), Ih(t), Rh(t), Sv(t), Ev(t), Iv(t) of the systen (2.1) are positive
for all t > 0 with the same initial non-negative condition.

Proof. The first equation of the system (2.1), can be written as

dSh

dt
+

(
β1Ih
Nh

+
β2Iv
Nv

+ µh

)
Sh = Λh ≥ 0,
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So that,

d

dt

[
Sh(t) exp

(∫ t

0

(
β1Ih(τ)

Nh(τ)
+

β2Iv(τ)

Nv(τ)
+ µh

)
dτ

)]
≥ 0, (2.3)

Integrating (3) yields

Sh(t) ≥ Sh(0) exp

[
−
∫ t

0

(
β1Ih(τ)

Nh(τ)
+

β2Iv(τ)

Nv(τ)
+ µh

)
dτ

]
> 0,

Where,

Nh(τ) = Sh(τ) + Eh(τ) + Ih(τ) +Rh(τ), Nv(τ) = Sv(τ) + Ev(τ) + Iv(τ),

In similarly way we can prove that Eh(t), Ih(t), Rh(t), Sv(t), Ev(t), Iv(t) are non-
negative for all t > 0.
Hence proved of the theorem
Therefore, the biological feasible region attraction of the system (2.2) as follows:

{Ω = (Sh, Eh, Ih, Rh, Sv, Ev, Iv) ∈ R7
+ : Nh ≤ Λh

µh
, Nv ≤ Λv

µv
}

3. Existence of Equilibria and the Basic Reproduction Number

3.1. Disease-free equilibrium point E0. We consider the system (2.1) and find
the disease-free equilibrium point . For our model we have disease free equilibrium

point as E0=(N0
h , E

0
h, I

0
h, R

0
h, N

0
v , E

0
h, I

0
v ) =

(
Λh

µh
, 0, 0, 0,

Λv

µv
, 0, 0

)
.

3.2. The basic reproduction number R0. We find the basic reproduction number
R0 by following the next generation matrix method as described in [3, 5]. Same
notation we use as in [3, 5]. We find the matrix F and V as follows:

F =


β1(Nh − Eh − Ih −Rh)

Ih
Nh

+ β2(Nh − Eh − Ih −Rh)
Iv
Nh

0
0

βv(Nv − Ev − Iv)
Iv
Nh

 ,

and

V =


(δh + µh)Eh

−δhEh + (γh + µh + µ1)Ish
(ηv + µv)Ev

−ηvEv + µvIv

 ,

F= Jacobian of F at

E0 =


0 β1 0 β2

0 0 0 0

0
βvN

0
v

N0
h

0 0

0 0 0 0

 ,
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and V= Jacobian of V at

E0 =


δh + µh 0 0 0
−δh γh + µh + µ1 0 0
0 0 µv + ηv 0
0 0 −ηv µv

 ,

and it follows that

FV −1 =



δhβ1

D1D2

β1

D2

β2ηv
D3µv

β2

µv

0 0 0 0
δhβv

D1D2

βvN
0
v

D2N0
h

0 0

0 0 0 0

 ,

The largest eigenvalue of FV −1 is called the basic reproduction number R0 and is
obtained as follows:

R0 =
δhβ1

2D1D2
+

√(
δhβ1

2D1D2

)2

+
β2δhβvηvµhΛv

µ2
hΛhD1D2D3

= R1 +
√
R2

1 + 4R2,

where,

D1 = δh + µh;D2 = γh + µh + µ1;D3 = ηv + µv,

R1 =
δhβ1

2D1D2
;R2 =

β2δhβvηvµhΛv

µ2
hΛhD1D2D3

,

Here R1 represents the basic reproduction due to human to human transmission by
ignoring the transmission of vectors. Similarly, R2 represents the basic reproduction
due to interactions with vectors in the absence of human to human transmission. The
reproduction number R0 gives the average number of infected individuals generated
by the one infected in a fully susceptible population and for our model it is given by
above expression of R0 .

3.3. Existence of Endemic Equilibrium. For the system (2.2), we get the endemic
equilibrium point as E1 = (N∗

h , E
∗
h, I

∗
h, R

∗
h, N

∗
v , E

∗
v , I

∗
v )
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where

N∗
h =

Λh − µ1I
∗
h

µh
,

E∗
h =

(γh + µh + µ1)I
∗
h

δh
= d1I

∗
h,

R∗
h =

γhI
∗
h

µh
= d2I

∗
h,

N∗
v =

Λv

µv
,

E∗
v =

µv

ηv
I∗v =

Λvβv

(µv + ηv)[µvβv + (Λh − µ1I∗h)µvI∗h]
,

I∗v =
Λvηvβv

µv(µv + ηv)[µvβv + (Λh − µ1I∗h)µvI∗h]
, provided Λh > µ1I

∗
h,

Substituting the value of N∗
h , I

∗
h, R

∗
h, N

∗
v , E

∗
v , I

∗
v in the equilibrium

dI∗h
dt

and I∗h is the

positive root of the following non-linear equation, we get

g(Ih) = −(δh + µh)(
Λh − d1µ1Ih

µh
) +

1

µh
[Λh −D4Ih] ,[

β1d1 +
β2Λhµhβvηvd1

(µv + ηv){βvµhd1Ih + µv(Λh − d1µ1Ih)}

]
= 0,

g(0) =
Λh

µh

[
β2d1 +

β2Λhµhβvηvd1
µv(µv + ηv)

]
− (δh + µh)

Λh

µh
> 0, for R0 > 1,

g(
Λv

µ1
) = −(δh + µh)(

Λh − d1Λv

µh
) +

1

µh

[
Λh −D4

Λv

µ1

]
,[

β1d1 +
β2Λhµhβvηvd1µ1

(µv + ηv){βvµhd1Λv + Λhµvµ1(1− d1)}

]
< 0,

g(A) = −(δh + µh)(
Λh − d1µ1A

µh
) +

1

µh
[Λh −D4A] ,[

β1d1 +
β2Λhµhβvηvd1

(µv + ηv){βvµhd1Eh + µv(Λh − d1µ1A)}

]
< 0,

where,

A =
Λh

(γh + µh + µ1)
, D4 = (µ1d1 + µh + µhd1 + µhd2)

Here we observe that for A < Ih <
Λh

µ1
, g(Ih) is always negative, i.e. there is no

change of sign in g(Ih). So there is no root of g(Ih) in the interval A < Ih <
Λh

µ1
.
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Figure 2. Showing the existence of one root of g(Ih) = 0 and polt
g(Ih) with Ih
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Hence we can conclude that there is at least one root of g(Ih) = 0 in the interval
0 < Ih < A

g(I ′h) = −D4

µh

[
β1d1 +

β2µhΛvβvηvd1
(µv + ηv){βvµhd1Ih + µv(Λh − d1µ1Ih)}

]

−
[

β2Λhµhβvηvd1{Λh −D4Ih}
µh(µv + ηv){βvµhd1Ih + µv(Λh − d1µ1Ih)}2

]
+

(δh + µh)µ1d1
µh

< 0

The above expression is negative under the condition Λh > µ1Ih and Λh > (µ1d1 +
µh + µhd1 + µhd2)Ih then we can say that there exists unique positive root I∗h (say)
of g(I ′h) = 0 in the interval 0 < Ih < A. Also, it is clear that if g(I ′h) < 0 at A then it
must be negative for all Ih in the interval 0 < Ih < A Hence under this condition, we
get the positive equilibrium point E1 = (N∗

h , E
∗
h, I

∗
h, R

∗
h, N

∗
v , E

∗
v , I

∗
v ) and the fact is

ploted in Figure 2 . But if g(I ′h) is not negative throughout the interval 0 < Ih < A,
then there is a possibility of more than one root of the given equation g(Ih) = 0. In
general vector-borne disease model exhibits backward bifurcation which corresponds
to endemic equilibrium points for R0 < 1. For our model too, we get two positive
roots of g(Ih) = 0 for some suitable set of parameters and the fact is ploted in Figure
3 . Hence we get two endemic equilibrium of the system (2.2).

4. Existence of Bifurcation

Here we analyze the existence of Backward bifurcation for the system (2.1). The
phenomenon of backward bifurcation suggests that the stable disease-free equilibrium
co-exists with a stable endemic equilibrium for R0 < 1. This phenomenon has been
observed in some epidemiological model [10], particularly Dengue, Malaria and Zika
disease transmission models [7, 16, 23]. The backward bifurcation phenomenon has
significances implications for public health practice, as it is related directly to whether
or not the disease can be effectively controlled even when associated reproduction
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Figure 3. Showing the existence of two roots of g(Ih) = 0 and plot
of g(Ih) with Ih
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number R0 < 1. The backward bifurcation property for human disease suggests
that the standard incidence function is more suitable for modeling than mass action
incident functions [7].

Let us consider the following change of variables Nh = x1, Eh = x2, Ish = x3,
Iah = x4, Rh = x5, Nv = x6, Iv = x7.

Also further by using vector notation X = (x1, x2, x3, x4, x5, x6, x7)
T , our system

(2.2) can be formulated as shown below

dX

dt
= F (x), where F = (f1, f2, f3, f4, f5, f6, f7)

T

x′
1 = Λh − µhx1 − µ1x3,

x′
2 = β1(x1 − x2 − x3 − x4)

x3

x1
+ β2(x1 − x2 − x3 − x4)

x7

x1
− (δh + µh)x2,

x′
3 = δhx2 + (γh + µh + µ1)x3,

x′
4 = γhx3 − µhx4,

x′
5 = Λv − µvx5

x′
6 = βv(x5 − x6 − x7)

x3

x1
− (µv + ηv)x6,

x′
7 = ηvx6 − µvx7, (4.1)

Consider the case R0 = 1. Suppose, further, that β1 = β∗
1 is chosen as a bifurcation

parameter. Solving for β1 = β∗
1 from R0 = 1 gives

β∗
1 =

(δh + µh)(γh + µh + µ1)

δh

(
1− µhβ2βvηvΛv

(δh + µh)(γh + µh + µ1)(µv + ηv)µ2
vΛh

)
The Jacobian of the above system (4.1) at disease-free equilibrium point E0 with
β1 = β∗

1 is given by
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J(β1) =



−µh 0 −µ1 0 0 0 0
0 −D1 0 0 0 0 β2

0 δh −D1 0 0 0 0
0 0 γh −µh 0 0 0
0 0 0 0 −µv 0 0

0 0 βv
x5

x1
0 0 −D3 0

0 0 0 0 0 ηv −µv


Where, x1 =

Λh

µh
, x5 =

Λv

µv
, D1 = δh + µh;D2 = γh + µh + µ1;D3 = ηv + µv.

According to Castillo-Chavez and Song [4], we use the center manifold theory and
analyze it, which is shown below

Theorem 4.1. (Castillo-Chavez and Song [4]). Consider the follwing general
system of ordinary differential equations with a parameter ϕ,

dx

dt
= f(x, ϕ), f : Rn × R → R, and f ∈ C2(Rn × R)

without loss of generality, it is assumed that 0 is the equilibrium point of the system
(i.e.f(0, ϕ)) ≡ 0 for all ϕ and

1. A = Dxf(0, 0) =

(
∂fi
∂xj

(0, 0)

)
is the linearization matrix of the system around the

equlibrium 0 with f evaluted at 0;
2. Zero is the simple eigenvalue of A and other eigenvalues of A has negatives real
parts;
3. Matrix A has a right eigenvector w and a left eigenvector v corresponding to the
zero eigenvalue.
Let fk be the kth component of f and

a1 =
n∑

k,i,j=1

vkwiwj
∂2fk

∂xi∂xj
(0, 0)

b1 =
n∑

k,i=1

vkwi
∂2fk
∂xi∂ϕ

(0, 0)

then the local dynamics of the system around the equilibrium point 0 is totally deter-
mined by the signs a1 and b1.
(i). a1 > 0, b1 > 0. When ϕ < 0 with |ϕ| ≪ 1, 0 is locally asymptotically stable, and
there exists a positive unstable equilibrium; when 0 < ϕ ≪ 0, 0 is unstable and there
exists a negative and locally asymptotically stable equilibrium;
(ii). a1 < 0, b1 < 0. When ϕ < 0 with |ϕ| ≪ 1, 0 is unstable; when 0 < ϕ ≪ 0 , 0 is
locally asymptotically stable, and there exists a positive unstable equilibrium;
(iii). a1 > 0, b1 < 0. When ϕ < 0 with |ϕ| ≪ 1 is unstable, and there exists a locally
asymptotically stable negative equilibrium; when 0 < ϕ ≪ 0, 0 is stable, and a positive
unstable equilibrium appears;
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(iv). a1 < 0, b1 > 0. When ϕ changes from negative to positive, 0 changes its stabil-
ity from stable to unstable. Correspondingly a negative unstable equilibrium becomes
positive and locally asymptotically stable.

4.1. Eigenvalues of Jβ∗
1
. It can easily seen that the Jacobian with β1 = β∗

1 of the
linearized system has a simple zero eigenvalue and the other eigenvalues have negative
real parts. Hence, the center manifold theorem can be used to analyze the dynamics
of the syster (4.1) near β1 = β∗

1 .
For the case when R0 = 1, using the technique described in [7, 10], it can shown taht
the matrix Jβ∗

1
has a right eigenvector (corresponding to the zero eigenvalue) given

by w = [w1, w2, w3, w4, w5, w6, w7]
T
, where

w1 = −µ1

µh
, w2 = 0, w3 = 1, w4 =

γh
µh

, w5 = 0, w6 = 0, w7 = 0.

Similarly, the matrix Jβ∗
1
has a right eigenvector (corresponding to the zero eigenvalue)

given by w = [v1, v2, v3, v4, v5, v6, v7]
T
, where

v1 = 0, v2 = 1, v3 =
δh + µh

δh
, v4 = 0, v5 = 0,

v6 =
β2ηv

µv(µv + ηv)
, v7 =

β2

µv
.

4.2. Computation of a1. For the system (4.1), the associated non-zero partial
derivatives at DFE (E0) are given by

∂2f2
∂x3∂x3

= −2β1

x1
=

∂2f2
∂x3∂x3

,

∂2f2
∂x4∂x3

= −β1

x1
=

∂2f2
∂x3∂x4

,

∂2f6
∂x1∂x3

= −βvx5

x2
1

=
∂2f2

∂x3∂x1
.

It follows from the above expressions that

a1 =
n∑

k,i,j=1

vkwiwj
∂2fk

∂xi∂xj
(0, 0)

= −v2

[
2w3w3

(
2β1

x1

)
+ 2w4w3

(
2β1

x1

)]
− 2v6w1w3

(
βvx5

x2
1

)
= −4β1(µh + γh)

Λh
+

β2βvµ1µhηvΛh

µ2
v(µv + ηv)Λ2

h

4.3. Computation of b1. For the system (4.1), the associated non-zero partial
derivatives at DFE (E0) are given by

∂2f2
∂x3∂β1

= 1
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Figure 4. Plot diagram is infective populations with reproduction
number showing the backward bifurcation by considering bifurcation
parameter β1.
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It follows from the above expressions that

b1 =

n∑
k,i=1

vkwi
∂2fk
∂xi∂ϕ

(0, 0)

= v2w3 = 1 > 0

Here, it is clear that the coefficient b1 is positive and according to the Theorem
(4.1),it will determine the phenomenon of backward bifurcation in our model. If the
sign of the cofficient a1 is positive, its implies that the model will undergo backward
bifurcation aroud the disease-free equilibrim for β1 = β∗

1 and the fact is demonestrated
in Figure 4. This suggest that the disease-free is not globaly stable.

5. Stability Analysis

5.1. Local Stability of Disease-Free Equilibrium(DFE).

Theorem 5.1. If R0 < 1, the disease-free equilibrium E0 is locally asymptotically
stable otherwise it is unstable.

The Jacobian matrix of the system (2.2) at disease-free equilibrium point E0 =
(N0

h , 0, 0, 0, N
0
v , 0, 0) is obtained as follows:

J0 =



−µh 0 −µ1 0 0 0 0
0 −D1 0 0 0 0 β2

0 δh −D2 0 0 0 0
0 0 γh −µh 0 0 0
0 0 0 0 −µv 0 0

0 0 βv
N0

v

N0
h

0 0 −D3 0

0 0 0 0 0 ηv −µv
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where,
D1 = δh + µh;D2 = γh + µh + µ1;D3 = ηv + µv.

Clearly, three eigenvalues of the matrix J0 are −µh,−µh and −µv and the remaining
four eigenvalues are the roots of the following characteristics equation:

λ4 + aλ3 + bλ2 + cλ+ d = 0

where,

a = 2µh + δh + γh + 2µv + ηv + µ1

b = µv(µv + ηv) + (µh + δh)(γh + µh + µ1) + (2µv + ηv)(2µh + δh + γh + µ1)

c = µv(µv + ηv) + (µh + δh)(γh + µh + µ1)

d = µv(µv + ηv)(µh + δh)(γh + µh + µ1)− β2βvδhηv
N0

v

N0
h

= µv(µv + ηv)(µh + δh)(γh + µh + µ1)(1−R2)

All conditions of Routh Hurtwiz criteria are satisfied as a > 0, b > 0, c > 0, d > 0 and
abc > a2d+c2 ,whenever R2 < 1. Hence all four eigenvalus of the characteristics equa-
tion are negative. Therefore the disease-free equilibrium E0 is locally asymptotically
stable if R0 < 1

5.2. Global Stability of Disease-Free Equilibrium(DFE).

Theorem 5.2. If R0 < 1, then the disease-free equilibrium E0 is globally asymptoti-
cally stable on Ω under some conditions.

Proof. For the global stability of disease-free equilibrium, we follow the same method
described in [12]. Consider the following Lyapunove function:

L = C1

∫ Sh

S0
h

(
1− S0

h

x

)
dy + C2Eh + C3Ih + C4

∫ Sv

S0
v

(
1− S0

v

x

)
dy

+C5Ev + C6Iv

The derivative of L along the solution of model (2.1) is

dL

dx
= C1

(
1− S0

h

Sh

)
dSh

dt
+ C2

dEh

dt
+ C3

dIh
dt

+ C4

(
1− S0

v

Sv

)
dSv

dt

+C5
dEv

dt
+ C6

dIv
dt

Where, Ci , for i = 1, 2, .., 6 are positive constants to be chosen later

dL

dx
= C1

(
1− S0

h

Sh

)[
Λh − β1

ShIh
Nh

− β2
ShIv
Nh

− µhSh

]
+ C2

[
β1

ShIv
Nh

+
ShIv
Nh

− (δh + µh)Eh

]
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+ C3 [δhEh(µ1 + µh + γh)Ih] + C4

(
1− S0

v

Sv

)[
Λv − βv

SvIh
Nh

− µvSv

]
+ C5

[
βv

SvIh
Nh

− (µv + ηv)Ev

]
+ C6(ηvEv − µvIv)

using S0
h =

Λh

µh
, S0

v =
Λv

µv
in the above equation and simplify, we get

dL

dx
= −C1µh

(S0
h − Sh)

2

Sh
+ (C2 − C1)(β1Ih − β2Iv)

Sh

Nh

+ [C3δh − C2(δh + µh)]Eh +

[
C1

β1Λh

µhNh
+ C4

βvΛv

µhNv

]
Ih

− C3(µ1 + µh + γh)Ih + (C5 − C4)βv
SvIh
Nh

− C4µv
(S0

v − Sv)
2

Sv

+ [C6ηv − C5(µv + ηv)]Ev +

[
C1

β2Λh

µhNh
− C6µv

]
Iv

Let us choose the constants

c1 = c2 = δh, c4 = c5 =
β1Λhδhηv

Nhµhµv(µv + ηv)
, c3 = µh + δh, c6 =

β1δhΛv

Nhµhµv
.

dL

dx
= −δhµh

(S0
h − Sh)

2

Sh
− β1Λhδhηv

Nhµh(µv + ηv)

(S0
v − Sv)

2

Sv

−(δh + µh)(µ1 + µh + γh)(1−R2
2)

Thus
dL

dx
< 0, for R0 ≤ 0 and zero if and only if S0

h = Sh, S
0
v = Sv,Eh = Ih = Rh = 0

and Ev = Iv = 0. Therefore the largest compact invariant set in Ω is the singleton
set at E0. So, the model (2.1) is globally asymptotically stable.

5.3. Local Stability of Endemic Equilibrium(EE).

Theorem 5.3. When R0 > 1, then endemic equilibrium E1 is locally asymptotically
stable under some conditions, otherwise it is unstable.

The Jacobian matrix of the system (2.2) at endemic equilibrium point E1 =
(N∗

h , E
∗
h, I

∗
h, R

∗
h, N

∗
v , E

∗
v , I

∗
v ) is obtained as follows:

J1 =



−µh 0 −µ1 0 0 0 0
m21 m22 m23 m24 0 0 m27

0 δh −(γh + µh + µ1) 0 0 0 0
0 0 γh −µh 0 0 0
0 0 0 0 −µv 0 0

m61 0 m63 0 m65 m66 m67

0 0 0 0 0 ηv −µv
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where

m21 =
(E∗

h + I∗h +R∗
h)(β1I

∗
h + βvI

∗
v )

(N∗
h)

2
;

m22 =
−(β1I

∗
h + βvI

∗
v )

N∗
h

− (δh + µh);

m23 =
β1(N

∗
h − E∗

h − 2I∗h −R∗
h)− β2I

∗
v

N∗
h

;

m24 =
−(β1I

∗
h + βvI

∗
v )

N∗
h

;

m27 =
β1(N

∗
h − E∗

h − I∗h −R∗
h)

N∗
h

;

m61 =
−βv(N

∗
v − E∗

v − I∗v )

(N∗
v )

2
;

m63 =
−βv(N

∗
v − E∗

v − I∗v )

N∗
v

;

m65 = m66 =
−βvI

∗
h

N∗
h

;

m67 =
βvI

∗
h

N∗
h

Clearly, one eigenvalue of the matrix J1 is −µv and remaining eigenvalues are the
roots of the following polynomial equation:

λ6 + d1λ
5 + d2λ

4 + d3λ
3 + d4λ

2 + d5λ+ d6 = 0

where

d1 = 2µh + µv + k1 −m22 +m66,

d2 = k1(µh + µ2
h +m66 + µv −m22µh) + µh +m66 + 2µvµh − 2m22µh

−m23δh −m22m66 −m66 − µv,

d3 = k1(µvm66 +m22m66µh +m22µhµv − µhm66 − µhµv −m66µ
2
h − µ1µ

2
h)

+µvµhm66 −m22m66µv +m66µhµv +m22m66µh +m22µhµv

+δhm23(m66 − 2µh − µv)− δhγhµvm24 + µ1δhm21,

d4 = µvµhm22m66 + k1µvµhm22m66 + µhm22(µh + k1)(m66 + µv)
−k1µvµ

2
hm66 − k1µ

2
hm22 + δhm23(µvm66 − µ2

h + 2µhm66 − 2µhµv)
+µhδhγhm24 + δhγhm24m66 − δhγhµ1m24 + δhηvm63m67,
−µ1δhm21m66 + µ1µvδhm21m66 − k1µhµvm66

d5 = k1µ
2
hm22(µv +m66)− k1µhµvm66(µh −m22) + µhµvm22m66(µh + k1)

+µ1δhηvm61m27 + δhm23(2µhµvm66 + µ2
hµvm66 + µ2

hm66 − µ2
hµv)

+δhγhµvm24m66 + δhγhµhm24m66 − µhµvδhγhm24 + δhγhηvm24m67
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+2δhµhηvm63m67 + µ1δhm21(m66 − µv)− µ1µvδhm21m66 − µ1δhηv,

d6 = k1µvµ
2
hm22m66 + µhδhγhm24 − µ1µhδhm21)(µvm66 + ηvm67)

+δhµvµ
2
hm23m66 + µ1δhηvm21m67 + ηvµvδhγhm24m67

−µ1ηvδhm27m61m66 + µhµvδhγhm24m67,

where

k1 = γh + µh + µ1

Thus the Routh-Hurwitz criterion, the above equation will give negative roots or
negative real parts if the following condition are satisfied:

d5 > 0,

∣∣∣∣d5 d3
1 d4

∣∣∣∣ > 0,

∣∣∣∣∣∣
d5 d3 d1
1 d4 d2
0 d5 d3

∣∣∣∣∣∣ > 0,

∣∣∣∣∣∣∣∣
d5 d3 d1 0
1 d4 d2 d0
0 d5 d3 d1
0 1 d4 d2

∣∣∣∣∣∣∣∣ > 0,

∣∣∣∣∣∣∣∣∣∣
d5 d3 d1 0 0
1 d4 d2 d0 0
0 d5 d3 d1 0
0 1 d4 d2 d0
0 0 d5 d3 d1

∣∣∣∣∣∣∣∣∣∣
> 0

,
Hence the endemic equilibrium point E1 of the system is locally asymptotically stable,
when R0 > 1.

5.4. Global Stability of Endemic Equilibrium(EE). Here we analysis the global
stability of the model (2.1) at endemic equilibrium E1, the endemic steady state the
system at E1 is given by,

Λh = (β1I
∗
h + β2I

∗
v )

S∗
h

Nh
+ µhS

∗
h,

(δh + µh)E
∗
h = (β1I

∗
h + β2I

∗
v )

S∗
h

Nh
,

δhE
∗
h = (µ1 + µh + γh)I

∗
h,

(δh + µh)(µ1 + µh + γh)

δh
I∗h = (β1I

∗
h + β2I

∗
v )

S∗
h

Nh
,

Λv =
βvS

∗
vI

∗
h

Nh
+ µvS

∗
v ,

(µv + ηv)E
∗
v =

βvS
∗
vI

∗
h

Nh
,

ηvE
∗
v = µvI

∗
v ,

βvS
∗
vI

∗
h

Nh
=

(µv + ηv)µvI
∗
v

ηv
,

Theorem 5.4. If R0 > 1, then the endemic equilibrium E1 is globally asymptotically
stable under some conditions.
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Proof. For the global stability of endemic equilibrium, we follow the same method
described in [11]. Here we consider the following Lyapunov function:

L =

∫ Sh

S0
h

(
1− S0

h

x

)
dx+

∫ Eh

E0
h

(
1− E0

h

x

)
dx+

(
δh + µh

δh

)∫ Ih

I0
h

(
1− I0h

x

)
dx

+

∫ Sv

S0
v

(
1− S0

v

x

)
dx+

∫ Ev

E0
v

(
1− E0

v

x

)
dx+

(
ηv + µv

ηv

)∫ Iv

I0
v

(
1− I0v

x

)
dx

The derivative of L along the solution of model (1) is

dL

dx
=

(
1− S0

h

Sh

)
dSh

dt
+

(
1− E0

h

Eh

)
dEh

dt
+

(
δh + µh

δh

)(
1− I0h

Ih

)
dIh
dt

+

(
1− S0

v

Sv

)
dSv

dt
+

(
1− E0

v

Ev

)
dEv

dt
+

(
ηv + µv

ηv

)(
1− I0v

Iv

)
dIv
dt

Now from the mathematical model we put the expressions for
dSh

dt
,
dEh

dt
,

dIh
dt

,
dSv

dt
,
dEv

dt
,
dIv
dt

in the above equation, which gives(
1− S0

h

Sh

)
dSh

dt
=

(
1− S0

h

Sh

)[
Λh − β1

ShIh
Nh

− β2
ShIv
Nh

− µhSh

]
=

(
1− S0

h

Sh

)[
µhS

∗
h − µhSh − (β1Ih + β2Iv)

Sh

Nh

]
+

(
1− S0

h

Sh

)[
(β1I

∗
h + β2I

∗
v )

S∗
h

Nh

]
= µhS

∗
h

(S∗
h − Sh)

2

Sh
+

(
1− S0

h

Sh

)[
(β1I

∗
h + β2I

∗
v )

S∗
h

Nh

]
−(β1Ih + β2Iv)

Sh

Nh
+ (β1I

∗
h + β2I

∗
v )

S∗
h

Nh

(
1− E0

h

Eh

)
dEh

dt
=

(
1− E0

h

Eh

)[
β1

ShIh
Nh

+ β2
ShIv
Nh

− (δh + µh)Eh

]
= (β1Ih + β2Iv)

Sh

Nh
− (β1Ih + β2Iv)

ShE
∗
h

NhEh
−(δh + µh)Eh + (δh + µh)E

∗
h

= (β1Ih + β2Iv)
Sh

Nh
− (β1Ih + β2Iv)

ShE
∗
h

NhEh

−(δh + µh)Eh + (β1I
∗
h + β2I

∗
v )

S∗
h

Nh

(
δh + µh

δh

)(
1− I0h

Ih

)
dIh
dt

=

(
δh + µh

δh

)(
1− I0h

Ih

)
δhEh
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−
(
δh + µh

δh

)(
1− I0h

Ih

)
(γh + µh + µ1)Ish

= (δh + µh)Eh − (δh + µh)Eh
I∗h
Ih

− (δh + µh)(γh + µh + µ1)

δh
(Ih + I∗h)

= (δh + µh)Eh − (β1I
∗
h − β2I

∗
v )

S∗
hEhI

∗
h

NhE∗
hIh

−(β1I
∗
h + β2I

∗
v )

S∗
hI

∗
h

NhIh
+ (β1I

∗
h + β2I

∗
v )

S∗
h

Nh(
1− S0

v

Sv

)
dSv

dt
=

(
1− S0

v

Sv

)[
Λv − βv

SvIh
Nh

− µvSv

]
=

(
1− S0

v

Sv

)[
βvS

∗
vI

∗
h

Nh
+ µvS

∗
v − βvSvIh

Nh
− µvSv

]
= µvS

∗
v

(S∗
v − Sv)

2

Sv
+

(
1− S0

v

Sv

)
βvS

∗
vI

∗
h

Nh
− βvSvIh

Nh
+

βvS
∗
vI

∗
h

Nh(
1− E0

v

Ev

)
dEv

dt
=

(
1− E0

v

Ev

)[
βv

SvIh
Nh

− (µv + ηv)Ev

]
= βv

SvIh
Nh

− βv
SvIhE

0
v

NhEv
− (µv + ηv)(Ev + E∗

v )

= βv
SvIh
Nh

− βv
SvIhE

0
v

NhEv
− (µv + ηv)Ev +

βvS
∗
vI

∗
h

Nh(
ηv + µv

ηv

)(
1− I0v

Iv

)
dIv
dt

=

(
ηv + µv

ηv

)(
1− I0v

Iv

)
(ηvEv − µvIv)

= (ηv + µv)Ev −
(
ηv + µv

ηv

)
(µvIv + µvI

∗
v )

−(ηv + µv)Ev
I∗v
Iv

= (ηv + µv)Ev −
βvS

∗
vI

∗
h

Nh

EvI
∗
v

E∗
vIv

− βvS
∗
vI

∗
h

Nh

I∗v
Iv

+
βvS

∗
vI

∗
h

Nh

It follows that

L = µhS
∗
h

(S∗
h − Sh)

2

Sh
+ µvS

∗
v

(S∗
v − Sv)

2

Sv

+ (β1I
∗
h + β2I

∗
v )

S∗
h

Nh

[
3− S∗

h

Sh
− Ih

I∗h
− EhI

∗
h

E∗
hIh

+
β1Ih + β2Iv
β1I∗h + β2I∗v

(
1− ShE

∗
h

S∗
hEh

)]
+

βvS
∗
vI

∗
h

Nh

[
3− S∗

v

Sv
− Iv

I∗v
− EvI

∗
v

E∗
vIv

+
Iv
I∗v

(
1− SvE

∗
v

S∗
vEv

)]
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Therefore, the arithmetic mean (A.M.) is greater than or equal to geometric mean
(G.M.), we have,[

3− S∗
h

Sh
− Ih

I∗h
− EhI

∗
h

E∗
hIh

+
β1Ih + β2Iv
β1I∗h + β2I∗v

(
1− ShE

∗
h

S∗
hEh

)]
≤ 0

[
3− S∗

v

Sv
− Iv

I∗v
− EvI

∗
v

E∗
vIv

+
Iv
I∗v

(
1− SvE

∗
v

S∗
vEv

)]
≤ 0

Thus it is easy to observed that
dL

dt
≤ 0 and equality

dL

dT
= 0 hold only for

dSh

dS∗
h

=

dEh

dE∗
h

=
dIh
dI∗h

=1 and
dSv

dS∗
v

=
dEv

dE∗
v

=
dIv
dI∗v

= 1 for which Sh = S∗
h, Eh = E∗

h, Ih =

I∗h, Sv = S∗
v , Ev = E∗

v , Iv = I∗v
From the LaSells invariance principal [14] the endemic equilibrium E1 of the given
system is globally asymptotically stable for R0 > 1

6. Sensitivity Analysis

In this section, we present the impact of the change in values of the parameters on
the functional value of the basic reproduction number R0. The sensitivity index of
R0 that depends differentiably on any of its parameter P as described [18, 22]

Y R0

P =
P

R0

∂R0

∂P

Here the parameter β1, β2, βv, δh, ηv are the leading parameters, which control the
basic reproduction number R0. The sensitivity of R0 are given below:

Y R0

β1
=

β1

R0

[
δh

2D1D2
+

β1δh

2D1D2

√
X̄

]
,

Y R0

β2
=

β2βvδhηvµhΛv

2R0Λhµ2
vD1D2D3

√
X̄

,

Y R0

βv
=

β2βvδhηvµhΛv

2R0Λhµ2
vD1D2D3

√
X̄

,

Y R0

δh
=

δh
R0

[
β1

2D1D2
+

β1δh

2D1D2

√
X̄

]
,

Y R0
ηv

=
β2ηvδhηvµhΛv

2R0Λhµ2
vD1D2D3

√
X̄

,

Y R0

β2
= Y R0

βv
,

where, √
X̄ =

(
β1δh

2D1D2

)2

+
β2βvδhηvµhΛv

Λhµ2
vD1D2D3

As the above partial derivatives are positive, so we conclude that the basic reproduc-
tion number R0 increases based on increase the control parameters. It is observed
that Y R0

β2
= Y R0

βv
, hence we can conclude that minore changes in β1, β2, βv, δh, ηv, we
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Figure 5. Influence of β1 and β2 on R0
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Figure 6. Influnce of β1 and β3 on R0
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will have same outcome on R0. In Figures 5 ,6 and 7, we have demonestrated the
effect of the parameters β1, β2,βv on R0

7. Numerical Simulation

For the Numerical simulation of the model, we consider all the parameters are in
per day basis. First we consider the following set of parameters which corresponds to
disease-free equilibrium.

Λh = 2;Λv = 40;β1 = 0.05;β2 = 0.05;βv = 0.06;

µh = 0.08;µ1 = 0.01; γh = 0.04; δh = 0.01; ηv = 0.2;µv = 0.1

For the above set of parameters we get R0 = 0.3162 < 1 and the disease-free equilib-
rium point E0(35.53, 0, 0, 0, 398.33, 0, 0) is stable. This fact is demonstrated in Figure
8. Later, we change our parameter µh from 0.009 to 0.08 and γh from 0.009 to 0.04
and this leads to increase in R0. Here R0 = 1.6165 > 1, and the endemic equilibrium
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Figure 7. Influence of β2 and βv on R0
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Figure 8. Variation of Sh Eh ,Ih,Rh Sv, Ev, Iv showing the stability
of disease-free equilibrium point with R0 = 0.3162.
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E1(125.31, 51.35, 25.15, 27.31, 378.51, 12.31, 15.53) is stable. The stability of the equi-
librium point E1 is shown in Figure 9. The effect of different values the parameter (γh)
which corresponds to infective human is demonstrated in Figure 10. It is clear that
the parameter (γh) increase the infected population decreases. The effect of different
values of the parameter (δh) which corresponds to exposed human is demonstrated in
Figure 11.

8. Optimal Control Model

Here, we have extended our model (2.1) to optimal control problem by including
three optimal control parameters ,namely, u1 , u2 and u3. If u1, u2 and u3 are equal
to zero, then there is no effect being placed in these controls at time t and if they are
equal to one then the maximum effect is applied. The control variable u1 represents
the reduction in the transmission between human to human. The control variable u2

represents the use of insecticide-treated bed nets and the use of mosquito repulsive
lotions and electronic devices, to reduce mosquito biting rate. The control variable u3
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Figure 9. Variation of Sh Eh ,Ih,Rh Sv, Ev, Iv showing the stability
of endemic equilibrium point with R0 = 1.6165.

0 100 200 300 400 500 600 700 800 900 1000

Time in Days

0

50

100

150

200

250

300

350

400

450

500

P
o
p
u
la

ti
o
n
s

S
h

E
h

I
h

R
h

S
v

E
v

I
v

Figure 10. Variation of Ih with time showing different values of γh.
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Figure 11. Variation of Eh with time showing different values of δh.
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corresponds to the additional death rate of mosquitoes due to control efforts. Based
on the above assumptions, the optimal control model as follows:

dSh

dt
= Λh − (1− u1)β1

ShIh
Nh

− (1− u2)β2
ShIv
Nh

− µhSh,

dEh

dt
= (1− u1)β1

ShIh
Nh

+ (1− u2)β2
ShIv
Nh

− (δh + µh)Eh,

dIh
dt

= δhEh − (γh + µh + µ1)Ih,

dRh

dt
= γhIh − µhRh,

dSv

dt
= Λv − (1− u2)βv

SvIh
Nh

− (µv + u3)Sv,

dEv

dt
= (1− u2)βv

SvIh
Nh

− (µv + ηv + u3)Ev,

dIv
dt

= ηvEv − (µv + u3)Iv, (8.1)

8.1. The Optimal Control Problem. In this section, we analyze the behavior of
the given model by using optimal control theory. The objective functional for fixed
time tf is given below:

J =

∫ tf

0

[
A1(Eh + Ih) +A2(Sv + Ev + Iv) +

1

2
A3u1

2 +
1

2
A4u

2
2 ++

1

2
A5u

2
3

]
dt

Here the parameter A1 ≥ 0, A2 ≥ 0, A3 ≥ 0, A4 ≥ 0, A5 ≥ 0 and they represent the
weight constants.
Our objective is to find the control parameters u1

∗,u2
∗, u3

∗ such that

J(u∗) = min
u∈Ω

J(u1, u2, u3), (8.2)

where Ω is the control set and is defined as
Ω = {u1, u2, u3 : measurable and 0 ≤ u1 ≤ 1}, 0 ≤ u2 ≤ 1}, 0 ≤ u3 ≤ 1} and
t ∈ [0, tf ].
The Lagrangian of this problem is defined as :

L(Eh, Ih, Sv, Ev, Iv, u1, u2, u3) = A1(Eh+Ih)+A2(Sv+Ev+Iv)+
1

2
A3u1

2+
1

2
A4u

2
2+

1

2
A5u

2
3

For our problem, we formed Hamiltonian H :

H = L(Eh, Ih, Sv, Ev, Iv, u1, u2, u3) + λ1
dSh

dt
+ λ2

dEh

dt
+ λ3

dIh
dt

+ λ4
dRh

dt

+λ5
dSv

dt
+ λ6

dEv

dt
+ λ7

dIv
dt

where λi,(i = 1, 2, ....7) are the adjoint variables. Now the differential equation cor-
responding to adjoint variables can be written as
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dλ1

dt
= µhλ1 + (1− u1)β1

Ih(Nh − Sh)

N2
h

(λ1 − λ2)

+(1− u2)
β2(Nh − Sh)Iv

N2
h

(λ2 − λ1) + (1− u2)
kvSvIh
N2

h

(λ6 − λ5)

dλ2

dt
= −A1 + µhλ2 + (1− u1)β1

ShIh
N2

h

(λ2 − λ1) + (1− u2)
β2ShIv
N2

h

(λ2 − λ1)

+δh(λ2 − λ3) + (1− u2)
βvSvIh
N2

h

(λ6 − λ5)

dλ3

dt
= −A1 + (µh + µ1)λ3 + γh(λ3 − λ4) + (1− u1)β1

Sh(Nh − Ih)

N2
h

(λ1 − λ2)

+(1− u2)β2
ShIv
N2

h

(λ2 − λ1) + (1− u2)
Sh(Nh − Ih)

N2
h

(λ5 − λ6)

dλ4

dt
= µhλ4 + (1− u1)

β1ShIh
N2

h

(λ2 − λ1) + (1− u2)
β2ShIv
N2

h

(λ1 − λ2)

+(1− u2)
βvSvIh
N2

h

(λ6 − λ5)

dλ5

dt
= −A2 + (µv + u3)λ5 + (1− u2)

Ih
Nh

(λ5 − λ6)

dλ6

dt
= −A2 + (µv + u3)λ6 − ηv(λ6 − λ7)

dλ7

dt
= −A2 + (µv + u3)λ7 + (1− u2)β2

Sh

Nh
(λ1 − λ2) (8.3)

Let S̃h, Ẽh,Ĩh,R̃h, S̃v, Ẽv,Ĩv be the optimum values of Sh, Eh,Ih, Rh,Sv, Ev Iv
respectively, and λ̃1, λ̃2, λ̃3,λ̃4,λ̃5,λ̃6,λ̃7 be the solution of the system (8.3)
By using [14, 15, 19], we state and prove the following theorem:

Theorem 8.1. There exist optimal controls (u1
∗, u2

∗, u3
∗) ∈ Ω such that

J(u1
∗, u2

∗, u3
∗) = min J(u1, u2, u3) subject to system (8.1).

Proof. To prove this theorem we use [15]. Here the state variables and the controls
are positive. For this minimizing problem, the necessary convexity of the objective
functional in (u1, u2, u3) is satisfied. The control variable set u1, u2, u3 ∈ Ω is also
convex and closed by the definition. The integrand of the functional A1(Eh + Ih) +

A2(Sv +Ev + Iv)+
1

2
A3u1

2 +
1

2
A4u

2
2 +

1

2
A5u

2
3 is convex on the control set Ω and the

state variables are bounded.
Since there exist optimal controls for minimizing the functional subject to equations
(8.1) and (8.3), we use Pontryagin’s maximum principle to derive the necessary con-
ditions to find the optimal solutions as follows:
If (x,u) is an optimal solution of an optimal control problem, then there exist a non-
trivial vector function λ = λ1, λ2, λ3, ......., λn satisfying the following equalities.

dx

dt
=

∂H(t, x, u, λ)

∂λ
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0 =
∂H(t, x, u, λ)

∂u

dλ

dt
= −∂H(t, x, u, λ)

∂x

With the help of Pontryagin’s maximum principle [15] and theorem (8.1), we prove
the following theorem:

Theorem 8.2. The optimal controls (u1
∗, u2

∗, u3
∗) which minimizes J over the region

Ω given by

u1
∗ = min{1,max

(
0, β1

S∗
hI

∗
h

A3N∗
h

(λ1 − λ2)

)
}

u2
∗ = min{1,max

(
0,

(β2S
∗
hI

∗
v )(λ1 − λ2) + (βvS

∗
vI

∗
h)(λ6 − λ5)

A4N∗
h

)
}

u3
∗ = min{1,max

(
S∗
vλ5 + E∗

vλ6 + I∗vλ7

A5

)
}

Proof. Using optimally condition :

∂H
∂u1

= 0,
∂H
∂u2

= 0,
∂H
∂u3

= 0,

we get,

∂H
∂u1

= u1A3 + β1
S∗
hI

∗
h

N∗
h

λ2 − β1
S∗
hI

∗
h

N∗
h

λ1

This implies

u1 = β1
S∗
hI

∗
h

A3N∗
h

(λ1 − λ2) = ũ1

Proceeding similarly, we get

u2 =
(β2S

∗
hI

∗
v )(λ1 − λ2) + (βvS

∗
vI

∗
h)(λ6 − λ5)

A4N∗
h

= ũ2

u3 =
S∗
vλ5 + E∗

vλ6 + I∗vλ7

A5
= ũ3

Again upper and lower bounds for these control are 0 and 1 respectively. i.e. u1 =
u2 = u3 = 0 if u1 < 0, u2 < 0, u3 < 0 and u1 = u2 = u3 = 1 if ũ1 > 1 , ũ2 > 1 and
ũ2 > 1 otherwise u1 = ũ1 , u2 = ũ2 and u3 = ũ3. Hence for these controls u1

∗,u2
∗

and u3
∗ we get optimum value of the function J .
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Figure 12. The graph represents the susceptible humans with and
without control.
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Figure 13. The graph represents exposed human with and without control
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Figure 14. The graph represents susceptible mosquito with and
without control

0 500 1000 1500

Time in Days

0

200

400

600

800

1000

1200

1400

1600

1800

S
v

without control
with control



CMDE Vol. 9, No. 1, 2021, pp. 117-145 143

Figure 15. Variation of exposed mosquito with and without control
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9. Numerical Simulation of Optimal Control

We simulate our optimal control model by keeping the parameters corresponding
to stability of endemic equilibrium point E1 of the model (2.1). With the help of
MATLAB the optimal control model is simulated. We solve the optimality system by
the iterative method with the help of forwarding and backward difference approxima-
tions [19]. Here in Figure 12, Figure 13, Figure14 and Figure 15, is plotted to observe
the effects of optimal controls for susceptible humans Sh, infected humans Ih, suscep-
tible mosquitos Sv and infected mosquitos Iv respectively are plotted to observe the
effects of optimal controls against time with and without optimal control. It is easy
to notice that optimal control is more effective in reducing the number of infectives
is considered the period. The all three optimal control application is the best control
strategy to minimize the number of infectives, which will reduce the spread of Zika
virus.

10. Conclusion

In this paper, a mathematical model for the transmission dynamics of Zika virus
is proposed and analyzed. For the dynamical behavior of the disease, we discussed
the existence of equilibria and computed basic reproduction number (R0) in detail.
The disease-free equilibrium is locally and globally (with restrictions of parameters)
asymptotically stable whenever the basic reproduction number R0 < 1. Here we pre-
sented the existence of backward bifurcation which suggests that when R0 < 1 is not
completely sufficient for eradicating the disease from the specific region and this fact is
demonstrated numerically. The backward bifurcation phenomenon has significances
implications for public health practice, as it is related directly to whether or not
the disease can be effectively controlled even when associated reproduction number
R0 < 1. Whenever the basic reproduction number R0 > 1, then the endemic equi-
librium is locally and globally asymptotically stable with restrictions of parameters.
The sensitivity of different parameters of (R0) is discussed and it is clear that (R0)
is very sensitive with respect to parametres involved with the model. The numerical
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simulation is performed to support our mathematical results and and to compare our
model with the existing model in [9]. Numerical simulation results indicate that the
increase in the recovery rate of (γh) causes a decrease in the equilibrium level of the
infective human.

We extended our model to the optimal control model and analyzed the optimal
control strategy to eliminate the virus from the tropical region. All three optimal
control parameters are the best control strategies to minimize the number of infec-
tives, which will reduce the spread of the Zika virus. It is easy to notice that optimal
control is more effective in reducing the number of infectives in a considered period.
The control variable (u1) represents the reduction in the transmission between human
to human. The control variable (u2) represents the use of insecticide-treated bed nets
and the use of mosquito repulsive lotions and electronic devices, to reduce mosquito
biting rate. The control variable (u3) corresponds to the additional death rate of
mosquitoes due to control efforts. The model is analyzed by using Pontryagin’s Maxi-
mum Principle for better results. The numerical simulation is executed to observe the
influence of optimal control. Finally, we can conclude that optimal control strategies
give us better results to reduce the Zika virus infection.
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